Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] flexible return type when indexing prob sequences #1189

Merged
merged 1 commit into from
Jan 21, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion tensordict/_contextlib.py
Original file line number Diff line number Diff line change
Expand Up @@ -330,7 +330,11 @@ def _reverse_squeeze(self, args, kwargs, out):

def _reverse_to_module(self, args, kwargs, out):
try:
with out.unlock_() if not is_compiling() else contextlib.nullcontext():
with (
out.unlock_()
if not is_compiling() and out is not None
else contextlib.nullcontext()
):
return self.to_module(*args, **kwargs, swap_dest=out)
except AttributeError:
# This is a bit unsafe but we assume that out won't have an unlock_() if it's not a TD
Expand Down
21 changes: 21 additions & 0 deletions tensordict/nn/probabilistic.py
Original file line number Diff line number Diff line change
Expand Up @@ -990,6 +990,27 @@ def __init__(
super().__init__(*modules, partial_tolerant=partial_tolerant)
self.return_composite = return_composite

def __getitem__(self, index: int | slice | str) -> TensorDictModuleBase:
if isinstance(index, (int, str)):
return self.module.__getitem__(index)
else:
mods = self.module.__getitem__(index)
if self.return_composite and any(
isinstance(
item,
(ProbabilisticTensorDictModule, ProbabilisticTensorDictSequential),
)
for item in mods
):
return type(self)(*mods, return_composite=self.return_composite)
elif isinstance(
mods[-1],
(ProbabilisticTensorDictModule, ProbabilisticTensorDictSequential),
):
return type(self)(*mods)
else:
return TensorDictSequential(*mods)

_dist_sample = ProbabilisticTensorDictModule._dist_sample

@property
Expand Down
19 changes: 19 additions & 0 deletions test/test_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -2251,6 +2251,25 @@ def test_nested_keys_probabilistic_normal(self, log_prob_key):
else:
assert td_out[module.log_prob_key].shape == (3, 4, 1)

def test_index_prob_seq(self):
m0 = ProbabilisticTensorDictModule(
in_keys=["loc"], out_keys=["sample"], distribution_class=Normal
)
m1 = TensorDictModule(lambda x: x, in_keys=["other"], out_keys=["something"])
m2 = ProbabilisticTensorDictModule(
in_keys=["scale"], out_keys=["sample2"], distribution_class=Normal
)
seq = ProbabilisticTensorDictSequential(m0, m1, m2)
assert isinstance(seq[0], ProbabilisticTensorDictModule)
assert isinstance(seq[:2], TensorDictSequential)
assert not isinstance(seq[:2], ProbabilisticTensorDictSequential)
assert isinstance(seq[-2:], ProbabilisticTensorDictSequential)

seq = ProbabilisticTensorDictSequential(m0, m1, m2, return_composite=True)
assert isinstance(seq[0], ProbabilisticTensorDictModule)
assert isinstance(seq[:2], ProbabilisticTensorDictSequential)
assert isinstance(seq[-2:], ProbabilisticTensorDictSequential)


class TestEnsembleModule:
def test_init(self):
Expand Down
Loading