-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an Excel macro for opening a Jupyter notebook
The new "OpenJupyterNotebook" macro can be called from VBA using Application.Run and takes a single optional argument. If passed a path of a notebook file that notebook will be opened. If passed a directory then Jupyter will be started in that directory. Also addded a new 'disable_ribbon' option to the config so the macro can be used without adding anything to the ribbon. Fixes #6
- Loading branch information
1 parent
56dac1e
commit 7c7b4bc
Showing
6 changed files
with
321 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,222 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 44, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<div>\n", | ||
"<style scoped>\n", | ||
" .dataframe tbody tr th:only-of-type {\n", | ||
" vertical-align: middle;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe tbody tr th {\n", | ||
" vertical-align: top;\n", | ||
" }\n", | ||
"\n", | ||
" .dataframe thead th {\n", | ||
" text-align: right;\n", | ||
" }\n", | ||
"</style>\n", | ||
"<table border=\"1\" class=\"dataframe\">\n", | ||
" <thead>\n", | ||
" <tr style=\"text-align: right;\">\n", | ||
" <th></th>\n", | ||
" <th>A</th>\n", | ||
" <th>B</th>\n", | ||
" </tr>\n", | ||
" </thead>\n", | ||
" <tbody>\n", | ||
" <tr>\n", | ||
" <th>0</th>\n", | ||
" <td>-5.0</td>\n", | ||
" <td>25.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>1</th>\n", | ||
" <td>-4.0</td>\n", | ||
" <td>16.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>2</th>\n", | ||
" <td>-3.0</td>\n", | ||
" <td>9.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>3</th>\n", | ||
" <td>-2.0</td>\n", | ||
" <td>4.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>4</th>\n", | ||
" <td>-1.0</td>\n", | ||
" <td>1.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>5</th>\n", | ||
" <td>0.0</td>\n", | ||
" <td>0.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>6</th>\n", | ||
" <td>1.0</td>\n", | ||
" <td>1.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>7</th>\n", | ||
" <td>2.0</td>\n", | ||
" <td>4.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>8</th>\n", | ||
" <td>3.0</td>\n", | ||
" <td>9.0</td>\n", | ||
" </tr>\n", | ||
" <tr>\n", | ||
" <th>9</th>\n", | ||
" <td>4.0</td>\n", | ||
" <td>16.0</td>\n", | ||
" </tr>\n", | ||
" </tbody>\n", | ||
"</table>\n", | ||
"</div>" | ||
], | ||
"text/plain": [ | ||
" A B\n", | ||
"0 -5.0 25.0\n", | ||
"1 -4.0 16.0\n", | ||
"2 -3.0 9.0\n", | ||
"3 -2.0 4.0\n", | ||
"4 -1.0 1.0\n", | ||
"5 0.0 0.0\n", | ||
"6 1.0 1.0\n", | ||
"7 2.0 4.0\n", | ||
"8 3.0 9.0\n", | ||
"9 4.0 16.0" | ||
] | ||
}, | ||
"execution_count": 44, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Use %xl_get to fetch data as a pandas DataFrame\n", | ||
"df = %xl_get --cell B31\n", | ||
"df" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 45, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Use %xl_set to set data back in Excel\n", | ||
"df[\"C\"] = df[\"A\"].apply(lambda x: x ** 3)\n", | ||
"%xl_set df --cell F31" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 29, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Set the index of the DataFrame from column A\n", | ||
"df = df.set_index(\"A\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 46, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPIAAAC2CAYAAADjodDeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcMklEQVR4nO3deXiU5b3/8fd3JpOZhCUkkBBCDERkCwrIEhbX4q7Hn+LSg63S67TnULU9as+vUkCttlTkcI7bZa2/S0XUKKDSolZLaa2VTUlY3EhYZAkQSAIEyL5MZu7fHzNJBkggZGbyDJPv67rmmswzM/fzhZnP3M9zzz3PI8YYlFLnNpvVBSilgqdBVioKaJCVigIaZKWigAZZqSigQVYqCsRYXUB79enTxwwcONDqMpSyzKZNm44YY5Jbu++cCfLAgQPZuHGj1WUoZRkR2dvWfbpprVQU0CArFQU0yEpFAQ2yUhFgd/nuoJ6vQVbKYgVlBdz+4e28vfXtDrehQVbKQtXuamaunkmSK4mbMm/qcDvnzNdPSkWjebnz2F+5n1evfZVerl4dbkd7ZKUs8tHuj/hw14fMGDmD8anjg2pLg6yUBfZX7GfuF3O5OOVifjryp0G3p0FWqpO5PW5mrp6J3WZn/mXzibEFv4er+8hKdbIXvnyBLWVbeObKZ0jrnhaSNsMeZBEpBCoBD9BojBknIknAO8BAoBD4vjHmWLhrUcpqnx/4nEX5i7hzyJ1cM+CakLXbWZvW3zPGjDbGjPPfngX8wxgzGPiH/7ZSUe1I7RHmrJ3DBb0uYOb4mSFt26p95FuAN/x/vwHcalEdSnUKr/Hy6NpHqXJXseDyBbhiXCFtvzOCbIC/icgmEZnhX9bXGFMM4L9O6YQ6lLJMTkEO6w6uY+b4mQxOHBzy9jtjsOsSY8xBEUkB/i4i29r7RH/wZwBkZGSEqz6lwir/SD7PbX6OqzKu4s4hd4ZlHWHvkY0xB/3Xh4DlQDZQKiL9APzXh9p47svGmHHGmHHJya0eGEGpiFbtrubh1Q/TJ64Pv5n8G0QkLOsJa5BFpJuI9Gj6G7gW2AJ8CPzI/7AfAR+Esw6lrPK79b/jQNUB5l82nwRnQtjWE+5N677Acv+nUAyw2BjzVxHZALwrIj8B9gHh2d5QykJ/3vVnPtr9EfePup+xfceGdV1hDbIxZjcwqpXlZcBV4Vy3UlbaW7GXuevnMrbvWGaMnHHmJwRJp2gqFWJuj5uHVz2Mw+Zg/mXzsdvsYV+nTtFUKsSe3/w8W49u5bnvPUdqt9ROWaf2yEqF0JqiNbxR8Ab/OvRfuSqj8/YeNchKhciR2iM8uu5RBicO5pfjftmp69ZNa6VCwGu8zF4zmxp3Da9d91rIp2CeifbISoXA6/mvs754PTOzZzKo16BOX78GWakgfXP4G17Y/ALXDLiGOwbfYUkNGmSlglDZUMnM1TNJjk/m8UmPh20K5pnoPrJSHWSMYe76uZRUl7Do+kVhnYJ5JtojK9VBH+z6gBV7VnDfqPu4OOViS2vRICvVAXvK9zAvdx7jU8fz7xf9u9XlaJCVOltrD6zlxyt/TKw9lqcufapTpmCeSXQE+Vgh/L/LYM3TULbL6mpUlKprrOOp3Ke475P76OXsxWvXvUbfbn2tLguIlsGumqMQ44R//NZ3SR0JI6bCiFsh6Xyrq1NRYNvRbcxaPYtd5bu4e/jdPDT2IZx2p9VlNRNjjNU1tMu4cePMxo0bT/+g4/uh4APIXw4H/I/tNwqybtVQqw7xGi9v5r/J818+T6Izkd9d+jsmp022pBYR2RRwJNoT74uqIAc6vs8f6vdPDPWIqb5gJ2WGo0wVRUqqS3hk7SPkleRxdcbVPD7p8aBOtBasrhnkQM2hXg4HNvmW9RvdsvmdODBEVaposWLPCuaun4vH62FW9ixuveBWyyZ7NNEgBzq21xfqgvdbQp12ccvmt4a6S6tsqGRe7jw+2v0RI5NHMv/S+ZzX8zyrywI0yG1rCnX+cji42bcs7WJfTz3sX3z71BZ/CqvOs6l0E3PWzKG0ppSfjvwp/zHyP0JygrUz8jRC8VfQawB0b/tosRrk9jhW2LJP3RTqhPMg83LIvMJ33bNf+NavLOP2uHnp65dYuGUh/bv356nLnmJU8imHmgsdY+BQAexZDbtXwd51UF8BNz0N49ueXKJBPlvHCmHnJ77/5MI1UOs/v1yfIS3BHngpxCd1Tj0qbPaU72HWmlkUlBVw2+DbmDl+Jt0c3UK7EmPg2J6W4BaugerDvvuSzg/oLK6Abr3bbEaDHAyvF0q/Dfj0/Bzc1YBAv5H+F+FKyJgIzu6dX5/qEGMM7+14j//Z8D84Y5w8MekJrh5wdehWUFnS8p7ZsxrK9/mWd0+F869o2crr1f79bw1yKHncvkGyphepKA88DWCLgfTxLZ+u6eN8k1RUxCmrLePxzx9nVdEqJqdNZu4lc0mJD/L0Y7XHoHBtS3CPbPctd/WCzMtaetw+gzs87qJBDqeGGti/viXYxV+B8UJMHAyY5A/25dD3IoiJtbraLm910WoeW/cYVQ1V/Ne4/+KuYXdhkw7MVK6r8H2INwW3+GvAgCMeBkxu6XFTL4IQzcU+XZCjY4qmlWLjYdAU3wWg9rhv8KIp2J884Vtuc0DyMN8Lm3oRpF4IfS/U/exO4DVevjv2He9sf4f3drzHkMQhvHrtq+07K6IxUL4fSrZAybe+3aySb33jKOB7Xc/Lhitn+4Lbf6wlH9jaI4dbZSnsXQvF3/jfCFugqrTl/p7pLcFOvcgX7sRMsEXH71msYIxhX+U+cotzyS3OZUPJBo7VH0MQpmdN54ExDxBrbyVsjfVwaKvvNSr51hfe0m+hrtz/APENTjW9XmljIGOS78O8E2iPbKUefeHC232XJlWH/G+Ub1veNN/9DYzHd39sd+g7whfqph48JavT3jDnotLqUvJK8lhfvJ68kjxKqksASIlP4bL0y8hOzWZCvwktB4yvPnLqa3BkB3gbffc74n2vwYjbTnwNInRAU3vkSOGuDegNtrS8weorfPeLDZIG+d9QwyEhHXqm+Xr0nmldLuTl9eXkleQ197qFFYUAJDgTfKFNzWZC4nAGeG1I5UGoOOCbqlua7/u/rSxuaaxH2olbRKkjfXPxO7Bva4zB7THUuj3Uuz3Uuj3Uub3+a8+pyxs81DV6qGvwcE1WKhelt324oIjskUXkeuB5wA68aoyZb1UtEcERB/3H+C5NjIHje08M9oGNkP+nU58flwg9+/svaZDQP+B2/3M+7DXuGjaVbvKHdz3bjm7HYIizxTI2Po07EkaR3SgMrT6G7dtVsG4JuGtOaMPYYvAkDaY+7RKqk4ZT2WsYx3oMpcqeQF1TsGo81G33UOveQ53b61/u8QfOF7z6Rk9zAGsbPCc+zu3B28G+sV+vuNMG+XQs6ZFFxA7sAK4BioANwF3GmIK2nhP1PfLZcNdB5UEoPwAVB6GiyHddfsDX81QcgJqyU58Xl9jSgyf4w92zv+8rEofLtzkZ478+4XZcyEZeA9XUVVNRdZSK6jKqqsuprD1OTV051XWV1DVUUtNQzf6aQrY2FLLTHMcj4DAwsr6BibU1TKit48L6BhyAFxtHbUkctvXhEL05aHpTbBLZ35jEPk8iRZ4kjpCAh7P7d7gcNlwOO3EOO67mi635dpzDjvOk203PCXxeXKwNV4wdV6wdV4yduNgT23HG2M74o4xI7JGzgZ3+064iIkuBW4A2g6wCOFy+QZfT/b7aXesP+cGWcAcG/8DGVsPeCNSJ+C42oV6EOrFRa3dQbXf6r2OptcVQbXNQK3aqbTZqsVMjQh3QYNw04qFBGnHjxY2XBvHSIIYGgXobNIjQ2I7vU23GMLy+gTtqhYzaeLrX9qGcPhyxJfNeTDKvuJKpiE2hJrYPzthYXzj8YXHF2kmMsZPWFCKHb1ncSWEMDGdcQNBi7TZstnNjrr1VQe4P7A+4XQRMOPlBIjIDmAGQkZHROZVFoEaPt3mzrmkT7uT9rraW17uTqG1IoK5xaPPmYTWVHO+5jZqeW3DHbMdjq8YrbrzSCNLeLTSP/+Lj8BqcBpzG4DSCwwixRnBgp7uJxWHsOCQGBw5iTSwOiSXW5iTW7iI2xkWsPZ44RzxORzfinT2Ic3YnztmDtN5DSep9AS6n09f7xZw74epMVgW5tVfilHeQMeZl4GXwbVqHu6iz4fGalsA07zd5A/abmoJ0cuBO3J/yXXsDghjwOP9+mNvTsX96bIwNV4wNl9NDTNxeTNx3uB07qHftAzHYiKWXbQjd7SnE2py47C6cMU7iYuKI81/HO1x0i42nmyOOHs44ujniSHDF08MZT4LLf3HGE2O3/gB0XZlVQS4CAieZpgMHg23U4zWn76H8PVLdSQMVJz7+xJHG1kYe69zBh8u3j9S0j2UnzmEjqVtswObeyftZtubHNi07ZX8s1o4rxoYjxsuO41vZUJpLXnEeXx/+mlqvmxiJYWTySLL73cCE1AmMTB7Z+vep6pxjVZA3AINFJBM4AEwDftDRxnJ3l3HPwjwaPN4OPf/kcPn2p3y3E7vFknaagY62BjaczQMa9ua2nTF27GHYLPQaL9uPbmdtUS65JblsKt1EbWMtgjAsaRh3D7+b7H7ZjEkZQ7zj3B25Vm2zJMjGmEYR+TmwEt/XT68ZY/I72l5arzh+clnmKT1Xm4GLDX+4wskYQ2FFIbnFueSV5JFXkkd5vW/2UWZCJrcMuoUJ/SYwPnW8pacxUZ1HJ4ScQzxeDzkFOeRszeFQzSEA+nXrx4R+E5pnLgX9Kx4VsSLx6yd1loqrinlk3SNsKNnA5LTJ3DvqXiamTiS9R7rlB4VT1tMgnwNW7FnB3C/m4jEefjv5txFxREcVWTTIEayyoZInc5/k490fR9wRHVVk0SBHqI0lG5mzdg6Hag5x/6j7O++IjuqcpO+MCOP2uPnD139g4bcLSe+Rzhs3vBHeIzqqqKBBjiC7y3cze83s8B7RUUUlDXIEOPmIjs9e+Wxoj+ioop4G2WJhOaKj6nI0yBZatX8Vv/7811Q1VDEre1bHj+ioujwNsgVqG2t5euPTvLP9nbM7oqNSbdAgd7L8snxmrZ5FYUUhP8r6UdtHdFTqLGiQO4nH62FR/iJe/PJFkuKSeOXaV5jYb6LVZakooUHuBAerDjJ7zWw2H9rMtQOu5deTfq2/SlIhpUEOs70Ve7nr47vwGi9PXvokN59/s86TViGnQQ4jt8fNw6sexiY2lt60lIyeXfe4Yyq8NMhh9Nzm59h6dCvPf+95DbEKK/3SMkzWFK3hzYI3mTZ0GlMyplhdjopyGuQwOFxzmEfXPcrgxMH8cvwvrS5HdQG6aR1iXuNlzto51LhrWHTdIpx2Pdm5Cj/tkUPs9fzXWV+8nlnZszi/12nOBKFUCGmQQ+ibw9/wwuYXuHbAtdw2+Dary1FdiAY5RCobKpm5eiYp8Sk8Pvlx/a5YdSrdRw4BYwxz18+lpLqE169/nZ6xPa0uSXUx2iOHwAe7PmDFnhXcP/p+RqeMtroc1QVpkIO0p3wP83LnkZ2azU8u/InV5aguSoMchAZPAzNXz8RpdzLv0nnYw3AycKXaQ/eRg/DspmfZdnQbv5/ye/p262t1OaoLC1uPLCJPiMgBEfnKf7kx4L7ZIrJTRLaLyHXhqiGcVhet5q2tb/HD4T/kivOusLoc1cWFu0d+1hjzv4ELRCQL32lURwBpwCciMsQY4wlzLSFzqOYQj659lKGJQ/nF2F9YXY5Sluwj3wIsNcbUG2P2ADuBbAvq6BCP18OcNXOo89Sx4IoFOgVTRYRwB/nnIvKNiLwmIon+Zf2B/QGPKfIvO4WIzBCRjSKy8fDhw2EutX0W5S8itySX2dmzOT9Bp2CqyBBUkEXkExHZ0srlFuAlYBAwGigGnm56WitNtXqSZmPMy8aYccaYccnJycGUGhJfH/6a33/5e24YeAO3XnCr1eUo1SyofWRjTLtOhyAirwAf+W8WAYGnFEwHDgZTR2eoaKjgV6t/RWq3VB6b9JhOwVQRJZyj1v0Cbk4Ftvj//hCYJiJOEckEBgN54aojFIwxzP1iLqXVpSy4fAE9YntYXZJSJwjnqPUCERmNb7O5EPgpgDEmX0TeBQqARuBnkT5ivXzncv5a+FceHPMgI5NHWl2OUqcIW5CNMfec5r4ngSfDte5Q2n18N/Pz5jOh3wR+fOGPrS5HqVbpFM3TqPfU8/Dqh3HZXTx16VN6XiYVsXSK5mk8s/EZdhzbwYtXvUhyvPWj5kq1RbuYNny2/zMWb1vMPVn3cHn65VaXo9RpaY/citLqUh5b9xjDk4bz0JiHrC5HhZDb7aaoqIi6ujqrS2mTy+UiPT0dh8PR7udokFsxP28+9Z56Fly+QM+UGGWKioro0aMHAwcOjMi5AMYYysrKKCoqIjMzs93P003rk+yr2Mc/9v2De7LuYWDCQKvLUSFWV1dH7969IzLEACJC7969z3qLQYN8kre2voXdZmfa0GlWl6LCJFJD3KQj9WmQA1Q0VPD+zve5MfNGHaVWYbV8+XJEhG3btoWkPQ1ygD/u+CO1jbXck9XmXBalQmLJkiVceumlLF26NCTtaZD9Gr2NLN62mPGp4xmWNMzqclQUq6qqYt26dSxcuDBkQdZRa79P9n5CSXUJc7LnWF2K6iS/+XM+BQcrQtpmVlpPHr95xGkf8/7773P99dczZMgQkpKS2Lx5M2PGjAlqvdoj++UU5JDRI0OPv6XCbsmSJUyb5htMnTZtGkuWLAm6Te2Rga8OfcU3R75hdvZsnU/dhZyp5wyHsrIyPv30U7Zs2YKI4PF4EBEWLFgQ1Gi6vmvx9cY9YnvoUT9U2C1btozp06ezd+9eCgsL2b9/P5mZmaxduzaodrt8kA9WHeSTfZ9wx+A7iHfEW12OinJLlixh6tSpJyy7/fbbWbx4cVDtdvlN68VbFyMIPxj+A6tLUV3AZ599dsqyBx54IOh2u3SPXO2u5o/f/ZFrBlxDardUq8tRqsO6dJDf3/k+Ve4qpmdNt7oUpYLSZYPs8Xp4q+AtRieP5qLki6wuR6mgdNkgf1b0GUVVRTodU0WFLhvknIIc0rqlMSVjitWlKBW0Lhnk/LJ8NpVu4gfDf0CMrcsP3Kso0CWDnFOQQ3xMPLcNvs3qUlQXZLfbGT16NKNGjWLMmDF8/vnnQbfZ5bqj0upSVu5ZybRh0/SMEcoScXFxfPXVVwCsXLmS2bNns2rVqqDa7HI98tLtS/EYj04AURGhoqKCxMTEMz/wDLpUj1zbWMt7O95jSsYUzutx3pmfoKLbillQ8m1o20y9CG6Yf9qH1NbWMnr0aOrq6iguLubTTz8NerVdKsh/3vVnyuvL9SsnZanATesvvviC6dOnN/8aqqOCCrKI3Ak8AQwHso0xGwPumw38BPAADxhjVvqXjwVeB+KAvwAPGmNaPT9yKHmNl5yCHLJ6ZzEmJbgfcasocYaeszNMmjSJI0eOcPjwYVJSUjrcTrD7yFuA24DVgQtFJAuYBowArgf+ICJ2/90vATPwnU51sP/+sFt7YC2FFYXck3VPxB9FUXUd27Ztw+Px0Lt376DaCfZE51uh1cN33gIsNcbUA3tEZCeQLSKFQE9jzBf+570J3AqsCKaO9sgpyCElLoXrBlwX7lUpdVpN+8jgOyD9G2+8gd1uP/2TziBc+8j9gfUBt4v8y9z+v09eHlY7ju1gffF6HhzzIA57+0/DoVQ4eDyhPx34GYMsIp8Arf3G7xFjzAdtPa2VZeY0y9ta9wx8m+FkZGScodK2vVXwFnExcdw55M4Ot6FUJDtjkI0xV3eg3SIg8PuddOCgf3l6K8vbWvfLwMsA48aN69CAWFltGR/v/pipg6eS4EzoSBNKRbxwTQj5EJgmIk4RycQ3qJVnjCkGKkVkovh2rKcDbfXqIfHu9ndp8Dbww+E/DOdqlLJUUEEWkakiUgRMAj4WkZUAxph84F2gAPgr8DNjTNOOwX3Aq8BOYBdhHOiq99SzdPtSLk+/nMyE9p/ZTqlzTbCj1suB5W3c9yTwZCvLNwIXBrPe9vrL7r9wtO6oTgBRUS9q51obY8jZmsOQxCFMSJ1gdTlKhVXUBnl98Xq+O/Yddw+/WyeAqIhSUlLCtGnTGDRoEFlZWdx4443s2LEjqDajNsg5BTkkuZK48fwbrS5FqWbGGKZOncqVV17Jrl27KCgoYN68eZSWlgbVblT+aGJ3+W7WHFjD/aPux2l3Wl2OUs3++c9/4nA4uPfee5uXNc3yCkZUBvntgreJtcXy/aHft7oUFcH+O++/2XY0NCcabzIsaRi/yv5Vm/dv2bKFsWPHhnSdEIWb1sfrjvPhrg+56fyb6B0X3ER0pc4VUdcjL/tuGXWeOu7OutvqUlSEO13PGS4jRoxg2bJlIW83qnpkt8fNkq1LmNhvIkMSh1hdjlKnmDJlCvX19bzyyivNyzZs2KDH7Aq0cu9KDtUe0lPAqIglIixfvpy///3vDBo0iBEjRvDEE0+QlpYWVLtRs2ltjCGnIIfMhEwu6X+J1eUo1aa0tDTefffdkLYZNT3y5kObKSgr4O7hd2OTqPlnKdUuUfOOzynIIcGZwM2Dbra6FKU6XVQEeX/lfj7d9ynfH/J94mLirC5HqU4XFUGucdeQnZrNtGHTrC5FnQM64aCtQelIfVER5KFJQ3n1uldJie/44URV1+ByuSgrK4vYMBtjKCsrw+VyndXzombUWqn2SE9Pp6ioiMOHD1tdSptcLhfp6elnfmAADbLqUhwOB5mZ0Xe0mKjYtFaqq9MgKxUFNMhKRQGJ1NG7k4nIYWDvGR7WBzjSCeV0hNbWMVpbiwHGmOTW7jhngtweIrLRGDPO6jpao7V1jNbWPrpprVQU0CArFQWiLcgvW13AaWhtHaO1tUNU7SMr1VVFW4+sVJcUFUEWketFZLuI7BSRWVbX00REzhORf4rIVhHJF5EHra7pZCJiF5EvReQjq2sJJCK9RGSZiGzz//9NsrqmQCLyC/9rukVElojI2f3KIcTO+SCLiB14EbgByALuEpEsa6tq1gj8X2PMcGAi8LMIqq3Jg8BWq4toxfPAX40xw4BRRFCNItIfeAAYZ4y5ELADlv6G9pwPMpAN7DTG7DbGNABLgVssrgkAY0yxMWaz/+9KfG/G/tZW1UJE0oGb8J3mNmKISE/gcmAhgDGmwRhz3NKiThUDxIlIDBAPHLSymGgIcn9gf8DtIiIoLE1EZCBwMZBrcSmBngNmAl6L6zjZ+cBhYJF/s/9VEelmdVFNjDEHgP8F9gHFQLkx5m9W1hQNQW7tVIsRNRQvIt2BPwIPGWMqrK4HQET+BThkjNlkdS2tiAHGAC8ZYy4GqoFIGvtIxLfVlwmkAd1ExNIzIkRDkIuA8wJup2PxZk4gEXHgC/Hbxpg/WV1PgEuA/yMihfh2R6aIyFvWltSsCCgyxjRtvSzDF+xIcTWwxxhz2BjjBv4ETLayoGgI8gZgsIhkikgsvkGHDy2uCQDxnZh5IbDVGPOM1fUEMsbMNsakG2MG4vs/+9QYExHn2THGlAD7RWSof9FVQIGFJZ1sHzBRROL9r/FVWDwYd84fIcQY0ygiPwdW4hs9fM0Yk29xWU0uAe4BvhWRr/zL5hhj/mJdSeeM/wTe9n847wb+zeJ6mhljckVkGbAZ3zcTX2LxLC+d2aVUFIiGTWulujwNslJRQIOsVBTQICsVBTTISkUBDbJSUUCDrFQU0CArFQX+Py+yxw2Idr6EAAAAAElFTkSuQmCC\n", | ||
"text/plain": [ | ||
"<Figure size 250x200 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": { | ||
"needs_background": "light" | ||
}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# Use %xl_plot to plot data in Excel\n", | ||
"ax = df.plot()\n", | ||
"%xl_plot ax --cell J29 --width 250 --height 200 --name \"example plot\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 47, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Calling in to Excel can be done using pyxll.xl_app\n", | ||
"from pyxll import xl_app\n", | ||
"xl = xl_app()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 48, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"True" | ||
] | ||
}, | ||
"execution_count": 48, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# For example, change the selection to A1:K20\n", | ||
"r = xl.Range(\"A1:K20\")\n", | ||
"r.Select()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.0" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.