forked from zygmuntszpak/ImageComponentAnalysis.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds moment-based ellipse region fitting
- Loading branch information
1 parent
acd0f5d
commit aee0add
Showing
5 changed files
with
208 additions
and
110 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
""" | ||
``` | ||
EllipseRegion <: AbstractComponentAnalysisAlgorithm | ||
EllipseRegion(; centroid = true, semiaxes = true, orientation = true, eccentricity = true) | ||
analyze_components(components, f::EllipseRegion) | ||
analyze_components!(df::AbstractDataFrame, components, f::EllipseRegion) | ||
``` | ||
Takes as input an array of labelled connected components and returns a | ||
`DataFrame` with columns that store the parameters of the best fit elliptic region | ||
for each component. The ellipse parameters are as follows: | ||
1. `centroid`: A length-2 `SVector` representing the center of the ellipse. | ||
2. `semiaxes`: A length-2 `SVector` representing the length of the semimajor and semiminor axes respectively. | ||
3. `orientation` ∈ [-90, 90): the orientation in degrees of the semimajor axes with respect to the positive x-axis. | ||
4. `eccentricity`: a measure of how nearly circular the ellipse is. | ||
# Example | ||
```julia | ||
using ImageComponentAnalysis, TestImages, ImageBinarization, ImageCore, AbstractTrees | ||
img = Gray.(testimage("blobs")) | ||
img2 = binarize(img, Otsu()) | ||
components = label_components(img2, trues(3,3), 1) | ||
measurements = analyze_components(components, EllipseRegion()) | ||
``` | ||
# Reference | ||
1. [1] M. R. Teague, “Image analysis via the general theory of moments*,” Journal of the Optical Society of America, vol. 70, no. 8, p. 920, Aug. 1980. | ||
""" | ||
Base.@kwdef struct EllipseRegion <: AbstractComponentAnalysisAlgorithm | ||
centroid::Bool = true | ||
semiaxes::Bool = true | ||
orientation::Bool = true | ||
eccentricity::Bool = true | ||
end | ||
|
||
function(f::EllipseRegion)(df::AbstractDataFrame, labels::AbstractArray{<:Integer}) | ||
out = measure_feature(f, df, labels) | ||
end | ||
|
||
|
||
# [1] M. R. Teague, “Image analysis via the general theory of moments*,” Journal of the Optical Society of America, vol. 70, no. 8, p. 920, Aug. 1980. | ||
# https://doi.org/10.1364/josa.70.000920 | ||
function measure_feature(property::EllipseRegion, df₁::AbstractDataFrame, labels::AbstractArray) | ||
N = maximum(labels) | ||
init = StepRange(typemax(Int), -1, -typemax(Int)) | ||
ℳ₀₀ = zeros(N) | ||
ℳ₁₀ = zeros(N) | ||
ℳ₀₁ = zeros(N) | ||
ℳ₁₁ = zeros(N) | ||
ℳ₂₀ = zeros(N) | ||
ℳ₀₂ = zeros(N) | ||
# TODO Document discretization model that underpins these moment computations. | ||
for i in CartesianIndices(labels) | ||
l = labels[i] | ||
if l != 0 | ||
y, x = i.I | ||
ℳ₀₀[l] += 1 | ||
ℳ₁₀[l] += x | ||
ℳ₀₁[l] += y | ||
ℳ₁₁[l] += x*y | ||
ℳ₂₀[l] += x^2 + 1/12 | ||
ℳ₀₂[l] += y^2 + 1/12 | ||
end | ||
end | ||
df₂ = @transform(df₁, M₀₀ = ℳ₀₀, M₁₀ = ℳ₁₀, M₀₁ = ℳ₀₁, M₁₁ = ℳ₁₁, M₂₀ = ℳ₂₀, M₀₂ = ℳ₀₂) | ||
fill_properties(property, df₂) | ||
end | ||
|
||
function fill_properties(property::EllipseRegion, df₁::DataFrame) | ||
df₂ = property.centroid ? compute_centroid(df₁) : df₁ | ||
df₃ = property.semiaxes ? compute_semiaxes(df₂) : df₂ | ||
df₄ = property.orientation ? compute_orientation(df₃) : df₃ | ||
df₅ = property.eccentricity ? compute_eccentricity(df₄) : df₄ | ||
end | ||
|
||
function compute_centroid(df₁::DataFrame) | ||
df₂ = @byrow! df₁ begin | ||
@newcol centroid::Array{SArray{Tuple{2},Float64,1,2},1} | ||
:centroid = SVector(:M₀₁ / :M₀₀, :M₁₀ / :M₀₀) | ||
end | ||
end | ||
|
||
function compute_semiaxes(df₁::DataFrame) | ||
df₂ = @byrow! df₁ begin | ||
@newcol semiaxes::Array{SArray{Tuple{2},Float64,1,2},1} | ||
:semiaxes = compute_semiaxes(:M₀₀, :M₁₀, :M₀₁, :M₁₁, :M₂₀, :M₀₂) | ||
end | ||
end | ||
|
||
|
||
function compute_semiaxes(M₀₀::Real, M₁₀::Real, M₀₁::Real, M₁₁::Real, M₂₀::Real, M₀₂::Real) | ||
μ′₂₀ = (M₂₀ / M₀₀) - (M₁₀ / M₀₀)^2 | ||
μ′₀₂ = (M₀₂ / M₀₀) - (M₀₁ / M₀₀)^2 | ||
μ′₁₁ = (M₁₁ / M₀₀) - ((M₁₀ / M₀₀) * (M₀₁ / M₀₀)) | ||
|
||
# See Equations (7) and (8) in [1]. | ||
l₁ = sqrt((μ′₂₀ + μ′₀₂ + sqrt(4 * μ′₁₁^2 + (μ′₂₀ - μ′₀₂)^2)) / (1 / 2)) | ||
l₂ = sqrt((μ′₂₀ + μ′₀₂ - sqrt(4 * μ′₁₁^2 + (μ′₂₀ - μ′₀₂)^2)) / (1 / 2)) | ||
SVector(min(l₁, l₂), max(l₁, l₂)) | ||
end | ||
|
||
function compute_orientation(df₁::DataFrame) | ||
df₂ = @byrow! df₁ begin | ||
@newcol orientation::Array{Float64} | ||
:orientation = compute_orientation(:M₀₀, :M₁₀, :M₀₁, :M₁₁, :M₂₀, :M₀₂) | ||
end | ||
end | ||
|
||
function compute_eccentricity(df₁::DataFrame) | ||
df₂ = @byrow! df₁ begin | ||
@newcol eccentricity::Array{Float64} | ||
:eccentricity = compute_eccentricity(:M₀₀, :M₁₀, :M₀₁, :M₁₁, :M₂₀, :M₀₂) | ||
end | ||
end | ||
|
||
function compute_eccentricity(M₀₀::Real, M₁₀::Real, M₀₁::Real, M₁₁::Real, M₂₀::Real, M₀₂::Real) | ||
b, a = compute_semiaxes(M₀₀, M₁₀, M₀₁, M₁₁, M₂₀, M₀₂) | ||
e = sqrt(1 - (b/a)^2) | ||
end | ||
# | ||
# [1] M. R. Teague, “Image analysis via the general theory of moments*,” Journal of the Optical Society of America, vol. 70, no. 8, p. 920, Aug. 1980. | ||
# https://doi.org/10.1364/josa.70.000920 | ||
function compute_orientation(M₀₀::Real, M₁₀::Real, M₀₁::Real, M₁₁::Real, M₂₀::Real, M₀₂::Real) | ||
μ′₂₀ = M₂₀ / M₀₀ - (M₁₀ / M₀₀)^2 | ||
μ′₀₂ = M₀₂ / M₀₀ - (M₀₁ / M₀₀)^2 | ||
μ′₁₁ = M₁₁ / M₀₀ - (M₁₀ / M₀₀) * (M₀₁ / M₀₀) | ||
|
||
# Ellipse tilt angle for various cases of signs of the second moments [1]. | ||
θ = 0.0 | ||
if μ′₂₀ - μ′₀₂ == 0 && μ′₁₁ == 0 | ||
θ = 0.0 | ||
elseif μ′₂₀ - μ′₀₂ == 0 && μ′₁₁ > 0 | ||
θ = 45.0 | ||
elseif μ′₂₀ - μ′₀₂ == 0 && μ′₁₁ < 0 | ||
θ = -45.0 | ||
elseif μ′₂₀ - μ′₀₂ > 0 && μ′₁₁ == 0 | ||
θ = 0.0 | ||
elseif μ′₂₀ - μ′₀₂ < 0 && μ′₁₁ == 0 | ||
θ = -90.0 | ||
elseif μ′₂₀ - μ′₀₂ > 0 && μ′₁₁ > 0 | ||
# 0 < θ < 45 | ||
ξ = 2*μ′₁₁ / (μ′₂₀ - μ′₀₂) | ||
θ = (1/2) * atand(ξ) | ||
elseif μ′₂₀ - μ′₀₂ > 0 && μ′₁₁ < 0 | ||
# -45 < θ < 0 | ||
ξ = 2*μ′₁₁ / (μ′₂₀ - μ′₀₂) | ||
θ = (1/2) * atand(ξ) | ||
elseif μ′₂₀ - μ′₀₂ < 0 && μ′₁₁ > 0 | ||
# 45 < θ < 90 | ||
ξ = 2*μ′₁₁ / (μ′₂₀ - μ′₀₂) | ||
θ = (1/2) * atand(ξ) + 90.0 | ||
elseif μ′₂₀ - μ′₀₂ < 0 && μ′₁₁ < 0 | ||
# -90 < θ < -45 | ||
ξ = 2*μ′₁₁ / (μ′₂₀ - μ′₀₂) | ||
θ = (1/2) * atand(ξ) - 90.0 | ||
end | ||
θ | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
@testset "ellipse region" begin | ||
|
||
function geometric_to_algebraic(A::Number, B::Number, H::Number, K::Number, τ::Number) | ||
a = cos(τ)^2 / A^2 + sin(τ)^2/B^2 | ||
b = (1/A^2 - 1/B^2)*sin(2*τ) | ||
c = cos(τ)^2/B^2 + sin(τ)^2/A^2 | ||
d = (2*sin(τ)*(K*cos(τ) - H*sin(τ))) / B^2 -(2*cos(τ)^2 *(H + K*tan(τ))) / A^2 | ||
e = (2*cos(τ)*(H*sin(τ) - K*cos(τ))) / B^2 - (2*sin(τ)*(H*cos(τ) + K*sin(τ))) / A^2 | ||
f = (H*cos(τ) + K*sin(τ))^2 / A^2 + (K*cos(τ) - H*sin(τ))^2 / B^2 - 1 | ||
return a, b, c, d, e, f | ||
end | ||
|
||
function generate_ellipse_region!(img, A::Number, B::Number, H::Number, K::Number, τ::Number) | ||
a, b, c, d, e, f = geometric_to_algebraic(A, B, H, K, τ) | ||
nrow, ncol = size(img) | ||
for y = 1:nrow | ||
for x = 1:ncol | ||
val = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f | ||
img[y,x] = val < 0 ? 1.0 : img[y,x] | ||
end | ||
end | ||
end | ||
|
||
img = zeros(80, 80) | ||
generate_ellipse_region!(img, 18, 10, 25, 25, deg2rad(135)); | ||
generate_ellipse_region!(img, 18, 10, 50, 50, deg2rad(135)); | ||
|
||
components = label_components(img, trues(3,3)) | ||
measurements = analyze_components(components, EllipseRegion()) | ||
|
||
@test all(round.(measurements[1,:].centroid) .== [25.0, 25.0]) | ||
@test all(round.(measurements[2,:].centroid) .== [50.0, 50.0]) | ||
|
||
@test all(round.(measurements[1,:].semiaxes) .== [10.0, 18.0]) | ||
@test all(round.(measurements[2,:].semiaxes) .== [10.0, 18.0]) | ||
|
||
@test round.(measurements[1,:].orientation) == -45 | ||
@test round.(measurements[2,:].orientation) == - 45 | ||
|
||
@test round.(measurements[1,:].eccentricity; digits = 2) == 0.83 | ||
@test round.(measurements[2,:].eccentricity; digits = 2) == 0.83 | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters