Single cell visualization using Virtual Reality (VR)
SingleCellVR can be used with our preprocessed datasets found at the link above or by following the steps below to process your own dataset.
Prepare your data for the visualization on Single Cell VR website https://singlecellvr.com/
Install and update using pip:
pip install scvr
$ scvr --help
usage: scvr [-h] -f FILE -t {scanpy,paga,seurat,stream} -a ANNOTATIONS [-g GENES] [-o OUTPUT]
scvr Parameters
required arguments:
-f FILE, --filename FILE
Analysis result file name (default: None)
-t {scanpy,paga,seurat,stream}, --toolname {scanpy,paga,seurat,stream}
Tool used to generate the analysis result (default: None)
-a ANNOTATIONS, --annotations ANNOTATIONS
Annotation file name. It contains the cell annotation key(s)
to visualize in one column (default: None)
optional arguments:
-g GENES, --genes GENES
Gene list file name. It contains the genes
to visualize in one column (default: None)
-o OUTPUT, --output OUTPUT
Output folder name (default: scvr_report)
-h, --help show this help message and exit
To get single cell VR report for Scanpy :
scvr -f ./scanpy_result/scanpy_10xpbmc.h5ad -t scanpy -a annotations.txt -g genes.txt -o scanpy_report
- Input files can be found here
- To generate the
scanpy_10xpbmc.h5ad
, check out Scanpy analysis. (Make sure setn_components=3
insc.tl.umap(adata,n_components=3)
)
To get single cell VR report for PAGA :
scvr -f ./paga_result/paga3d_paul15.h5ad -t paga -a annotations.txt -g genes.txt -o paga_report
- Input files can be found here
- To generate the
paga3d_paul15.h5ad
, check out PAGA analysis. (Make sure setn_components=3
insc.tl.umap(adata,n_components=3)
)
To get single cell VR report for Seurat :
scvr -f ./seurat_result/seurat3d_10xpbmc.loom -t seurat -a annotations.txt -g genes.txt -o seurat_report
- Input files can be found here
- To generate the
seurat3d_10xpbmc.loom
, check out Seurat analysis. (Make sure setn.components = 3
inpbmc <- RunUMAP(pbmc, dims = 1:10, n.components = 3)
)
To get single cell VR report for STREAM :
scvr -f ./stream_result/stream_nestorowa16.pkl -t stream -a annotations.txt -g genes.txt -o stream_report
- Input files can be found here
- To generate the
stream_nestorowa16.pkl
, check out STREAM analysis.
Or use STREAM package, e.g.:
import stream as st
st.save_vr_report(adata,
ann_list=['label','kmeans','branch_id_alias','S4_pseudotime'],
gene_list=['Gata1','Car2','Epx','Mfsd2b','Mpo','Emb','Flt3','Dntt'],
file_name='stream_report')