- Linear systems of equations
- Eigenvalue problems
- Linear programming (linear optimization)
- Techniques for large, sparse problems
- Function evaluation
- Automatic and numerical differentiation
- Interpolation
- Approximation (Padé, least squares, radial basis functions)
- Integration (univariate, multivariate, Fourier transform)
- Special functions
- Nonlinear systems of equations
- Optimization = nonlinear programming
- Techniques for large, sparse problems
- Numerical data analysis (= numerical statistics)
- Singular value decomposition (SVD)
- Moore–Penrose inverse
- Condition number
- Accuracy and stability of numerical algorithms
- LU decomposition
- Partial pivoting
- Cholesky decomposition
- Sparse Factorization
- Fill-in
- Least-squares function approximation
- Gaussian elimination
- QR decomposition and pivoting
- Householder transformation
- Givens method
- Eigenvalues and eigenvectors
- Introduction to perturbation theory
- Numerical methods for linear least squares
- Ill-posed problem
- Spectral theorem
- Hessenberg matrix
- QR algorithm
- Jacobi method
- Jacobi eigenvalue algorithm
- Inverse iteration
- Power iteration
- Rayleigh quotient iteration
- Krylov subspace
- Method of Arnoldi, Lanczos, Conjugate gradient, IDR(s) (Induced dimension reduction), GMRES (generalized minimum residual), BiCGSTAB (biconjugate gradient stabilized), QMR (quasi minimal residual), TFQMR (transpose-free QMR), and MINRES (minimal residual) methods.
- Preconditioning
- Incomplete Cholesky factorization
- Matrix and Tensor Products
- Matrix Decompositions
- Accuracy
- Memory use
- Speed
- Parallelization & Vectorization
- Topic Frequency-Inverse Document Frequency (TF-IDF)
- Singular Value Decomposition (SVD)
- Non-negative Matrix Factorization (NMF)
- Stochastic Gradient Descent (SGD)
- Intro to PyTorch
- Truncated SVD
- Load and View Video Data
- SVD
- Principal Component Analysis (PCA)
- L1 Norm Induces Sparsity
- Robust PCA
- LU factorization
- Stability of LU
- LU factorization with Pivoting
- History of Gaussian Elimination
- Block Matrix Multiplication
- Broadcasting
- Sparse matrices
- CT Scans and Compressed Sensing
- L1 and L2 regression
- Linear regression in sklearn
- Polynomial Features
- Speeding up with Numba
- Regularization and Noise
- Normal equations and Cholesky factorization
- QR factorization
- SVD
- Timing Comparison
- Conditioning & Stability
- Full vs Reduced Factorizations
- Matrix Inversion Unstabiity
- SVD
- DBpedia Dataset
- Power Method
- QR Algorithm
- Two-phase approach to finding eigenvalues
- Arnoldi Iteration
- Gram-Schmidt
- Householder
- Stability Examples
- Maps and difference equations
- Transients and attractors
- Parameters and bifurcations
- Return maps
- Bifurcation diagram
- Feigenbaum and universality
- State variables and state space
- Nonlinearity and nonintegrability
- Fixed points and stability
- Saddle points and eigenvectors
- Stable and unstable manifolds
- Attractors, strange and otherwise
- ODEs, vector fiedls and dynamical landscapes
- ODE solvers
- Forward and backward Euler
- ODEs error and adaptation
- Production ODE solvers
- Numerical dynamics and due diligence
- Shadowing and chaos
- Dynamics and state-space deformation
- Lyapunov exponents
- Sections and projections
- Unstable periodic orbits
- Fractals and chaos
- Time-series analysis and the observer problem
- Delay-coordinate embedding
- Topology, diffeomorphisms and reconstruction of dynamics
- Estimating embedding parameters
- Caveats and extensions
- Computing fractal dimensions
- Computing Lyapunov exponents
- Noise and filtering
- Applications
- Parameter estimation (least squares, maximum likelihood)
- Prediction
- Classification
- Time series analysis (signal processing, filtering, time correlations, spectral analysis)
- Categorical time series (hidden Markov models)
- Random numbers and Monte Carlo methods
- Techniques for large, sparse problems
- Numerical functional analysis
Ordinary differential equations (initial value problems, boundary value problems, eigenvalue problems, stability)
- Techniques for large problems
- Partial differential equations (finite differences, finite elements, boundary elements, mesh generation, adaptive meshes)
- Stochastic differential equations
- Integral equations (and regularization)
- Non-numerical algorithms
- leggi di capitalizzazione
- tassi di interesse a pronti e a termine
- valutazione di obbligazioni-scelta di investimenti
- rischio di tasso di interesse, duration, indicatori di variabilità
- teoria dell’immunizzazione
- teoria dell’utilità attesa
- avversione al rischio
- analisi media-varianza
- scelte di portafoglio tra un titolo rischioso e uno privo di rischio
- scelte di portafoglio tra un titolo privo di rischio e N titoli rischiosi
- scelta di assicurazione
- frontiera dei portafogli con titoli rischiosi
- frontiera dei portafogli con un titolo privo di rischio
- scelte di portafoglio e frontiera dei portafogli
- capital asset pricing model
- assenza opportunità di arbitraggio
- teorema fondamentale dell’asset pricing
- arbitrage pricing theory
- albero binomiale
- mapping del rischio: portafoglio azionario, obbligazionario, derivati
- Value at Risk, Expected shortfall
- principali metodologie per la stima del VaR (full evaluation e metodo delta-normal), backtesting del VaR
- funzionamento sistema finanziario
- intermediazione finanziaria e creditizia
- mercato monetario, obbligazionario, azionario, dei cambi
- ruolo della Banca Centrale
- politica monetaria
- gestione di un intermediario finanziario/creditizio
- Seminario su Rapporto Stabilità Finanziaria (BDI)
- bootstrap della curva, tassi equivalenti, tassi a termine (relazione con quelli a pronti),
- valutazione di obbligazioni
- TIR, TAEG
- Rendimento investimento, tasso cedolare, tasso di rendimento (HP, scadenza e aspettative di tasso)
- rischio di tasso di interesse, duration, immunizzazione
- individuazione del grado di avversione al rischio
- costruzione frontiera
- analisi al variare della correlazione, dei titoli, lunghezza delle serie storiche
- determinazione del portafoglio tangente
- scelte di portafoglio e frontiera dei portafogli con grado di avversione al rischio
- albero binomiale: opzioni americane, payoff complessi
- bound di non arbitraggio su opzioni
- copertura tramite strategie con derivati
- stima del VaR, ES: metodi parametrici, simulazione stroica
- metodo delta-normal
- Backtesting del VaR
- Calling functions and defining our own, and using Python's builtin documentation
- Using booleans for branching logic
- Lists: indexing, slicing and mutating
- Loops and list comprehensions
- Strings and dictionaries
- Working with external libraries: imports, operator overloading
- Python syntax
- Statements and expressions
- Control flow
- Data types
- Sequences
- Dictionaries and sets
- Functions
- Generators and iterators
- Classes
- Exception handling
- Input / output
- Complex example
- Modules and Packages
- Namespaces and scoping
- Text processing
- System functions
- Data exploration
- Model Validation: measure the performance of your model
- Underfitting and overfitting
- Random forest
- Missing values
- Categorical variables
- Pipeline
- Cross-validation
- XGBoost
- Data leakage
- Cases for model insights
- Permutation features
- Partial plots
- SHAP values
- Aggregate SHAP values
- Line charts
- Bar charts and heatmaps
- Scatter Plots
- Histograms and density plots
- Plot types and custom style
- Creating, reading and writing: dataframe and series
- Indexing, Selecting and assigning
- Summary functions and maps
- Grouping and sorting
- Data types and missing values
- Renaming and combining
- Baseline model
- Categorical encodings
- Feature generation
- Feature selection
- Deep learning for Computer Vision
- Convolutions
- Tensorflow and Keras
- Transfer Learning
- Data Augmentation
- Stochastic Gradient Descent and Back-Propagation
- Models without Transfer Learning
- Dropout and Strides for larger models
- Handling big datasets with BigQuery and SQL
- Select, From, Where
- Group by, Having, Count
- Order by
- As, With
- Joining data
- JOINs and UNIONs
- Analytic Functions
- Nested and repeated data
- Efficient queries
- Coordinate reference systems
- Interactive maps
- Manipulating geospatial data
- Proximity analysis
- Text classification
- Word vectors
- RPA Starter
- Get Started with StudioX
- User Interface Automation with StudioX
- Word Automation with StudioX
- Decisions, Iterations, Scenarios with StudioX
- Error Handling in StudioX
- File and Folder AUtomation with StudioX
- The StudioX Project Notebook
- Outlook Automation with StudioX
- Virtual Automation Bootcamp with StudioX
- Introduction to the RPA Developer Role
- Variables, Data Types and Control Flow
- Data Manipulation
- Excel and Data Tables
- UI Interactions
- Selectors
- Project Organization
- Error and Exception Handling
- Debugging
- Thumbnail
- PDF Automation
- E-mail Automation
- Orchestrator for Developers
- Robotic Enterprise Framework Overview
- RPA Business Analysis Fundamentals
- Basic HTML and HTML5
- Basic CSS
- Applied Visual Design
- Applied Accessibility
- CSS Flexbox
- CSS Grid
- https://www.freecodecamp.org/certification/istwine/responsive-web-design
https://wqu.thedataincubator.com/certificate/6583903196282880
- Program flow and data structures
- Data structures, algorithms and classes
- Data formats
- Multi-dimensional arrays and vectorization in NumPy
- DataFrame, Series, data ingestion and transformation with pandas
- Data aggregation in pandas
- SQL and Object-Relational Mapping
- Data munging
https://wqu.thedataincubator.com/certificate/4514208225951744
- Introduction to machine learning and Scikit-learn API
- Regression, classification, & model selection
- Feature engineering
- NLP and dimension reduction
- KNeighbors, clustering and ensemble models
- Support vector machines
- Time series analysis and anomaly detection
- Clustering
https://www.datacamp.com/statement-of-accomplishment/track/4defa4e8ccb7125ecf946043416f25c0e09828a3
- Python Basics
- Python Lists
- Functions and Packages
- Numpy
- https://www.datacamp.com/statement-of-accomplishment/course/25e15f6a7968d20b49d29f55eb6e5c4542f88db6
- Matplotlib
- Dictionaries & Pandas
- Logic, Control Flow and Filtering
- Loops
- https://www.datacamp.com/statement-of-accomplishment/course/1249f735e9a51c7ea7d95738027f9968fad410d5
- Data ingestion & inspection
- Exploratory data analysis
- Time series in pandas
- https://www.datacamp.com/statement-of-accomplishment/course/6cdcf13b3123653e53a84110551cda4b7ef32ae7
- Transforming Data
- Aggregating Data
- Slicing and indexing
- Creating and Visualizing DataFrames
- https://www.datacamp.com/statement-of-accomplishment/course/1e50ed013cc19f82e48e664511481dd329b755f0
- Preparing data
- Concatenating data
- Merging data
- https://www.datacamp.com/statement-of-accomplishment/course/ab4f829dca07ecce5b5bb7745a6c0ec01508db8f
- Introduction to Matplotlib
- Plotting time-series
- Quantitative comparisons and statistical visualizations
- Sharing visualizations with others
- https://www.datacamp.com/statement-of-accomplishment/course/20ff32aa696ff597ee51aea37030046b417281a8
- Introduction to Seaborn
- Visualizing Two Quantitative Variables
- Visualizing a Categorical and a Quantitative Variable
- Customizing Seaborn Plots
- https://www.datacamp.com/statement-of-accomplishment/course/b4d85923e5de1257becd517b4b73b89ae848e9db
- Writing your own functions
- Default arguments, variable-length arguments and scope
- Lambda functions and error-handling
- https://www.datacamp.com/statement-of-accomplishment/course/a61dae84fb58c40326ea89e960c249d69914e962
- Using iterators in Python
- List comprehensions and generators
- https://www.datacamp.com/statement-of-accomplishment/course/15d388ccf67d4a059f2ed8c173bbfeb6833aa08a
- Introduction to Seaborn
- Customizing Seaborn Plots
- Additional Plot Types
- Creating Plots on Data Aware Grids
- https://www.datacamp.com/statement-of-accomplishment/course/087ee7be07030815d90886634559d7e12be44112
- Introduction and flat files
- Importing data from other file types
- Working with relational databases in Python
- https://www.datacamp.com/statement-of-accomplishment/course/aed443aa02c368ff5b256c29162552a8880d52a1
- Importing data from the Internet
- Interacting with APIs to import data from the web
- Diving deep into the Twitter API
- https://www.datacamp.com/statement-of-accomplishment/course/81505c3267b1eb11f0bf8d0b950dac77742699d1
- Common data problems
- Text and categorical data problems
- Advanced data problems
- Record linkage
- https://www.datacamp.com/statement-of-accomplishment/course/c69b503e0fcf40376d854b95d20f11b5e096ecf0
- Dates and Calendars
- Combining Dates and Times
- Time Zones and Daylight Saving
- Easy and Powerful: Dates and Times in Pandas
- https://www.datacamp.com/statement-of-accomplishment/course/b3b39c7b9d56f126e7f0e8909ba7b3c84fc808c4
- Best Practices
- Context Managers
- Decorators
- More on Decorators
- https://www.datacamp.com/statement-of-accomplishment/course/cccd4da54bf1588d0f078fba0579335d1e60b4d1
- Read, clean, and validate
- Distributions
- Relationships
- Multivariate Thinking
- https://www.datacamp.com/statement-of-accomplishment/course/26a9f47ab9b10498957af591bbc281b836c24ea4
- Preparing the data for analysis
- Exploring the relationship between gender and policing
- Visual exploratory data analysis
- Analyzing the effect of weather on policing
- https://www.datacamp.com/statement-of-accomplishment/course/7cf53e3a5ded47ae2d0deadf2668708a7c851f18
- Graphical exploratory data analysis
- Quantitative exploratory data analysis
- Thinking probabilistically: Discrete variables
- Thinking probabilistically: Continuous variables
- https://www.datacamp.com/statement-of-accomplishment/course/2510a5a498d0c9d63ae1acf6beba8287ed4d8f95
- Parameter estimation by optimization
- Bootstrap confidence intervals
- Introduction to hypothesis testing
- Hypothesis test examples
- https://www.datacamp.com/statement-of-accomplishment/course/40190d3fa694e10483416873a4d3f0d73dc320cc
- Classification
- Regression
- Fine-tuning model
- Preprocessing and pipelines
- https://www.datacamp.com/statement-of-accomplishment/course/21e6baa27fd626ae83263c0cd9dafe7a0cda6fac
- Clustering for dataset exploration
- Visualization with hierarchical clustering and t-SNE
- Decorrelating your data and dimension reduction
- Discovering interpretable features
- https://www.datacamp.com/statement-of-accomplishment/course/e4d104a7675a916c87109b712dd30eb57fad2d08
- Classification and Regression Trees
- The Bias-Variance Tradeoff
- Bagging and Random Forests
- Boosting
- Model Tuning
- https://www.datacamp.com/statement-of-accomplishment/course/3b7ed51db0388b988a276c94ceeebe543b3df94e
- Exploring the raw data
- Creating a simple first model
- Improving your model
- Learning from the experts
- https://www.datacamp.com/statement-of-accomplishment/course/1425e788e3c6acf17d57371479d4b0c182bae5af
- Introduction to Clustering
- Hierarchical Clustering
- K-Means Clustering
- Clustering in Real World
- https://www.datacamp.com/statement-of-accomplishment/course/84e29075aea6af4231e9bac5740508402ef88fec
https://www.datacamp.com/statement-of-accomplishment/track/df978de64672fadfd03c563736dfff3716e800b5
- Selecting columns
- Filtering rows
- Aggregate Functions
- Sorting and grouping
- https://www.datacamp.com/statement-of-accomplishment/course/64146da9cee29fcb70a8caeb9f699a1970356f1f
- CASE statements
- Short and Simple Subqueries
- Correlated Queries, Nested Queries, and Common Table Expressions
- Window Functions
- https://www.datacamp.com/statement-of-accomplishment/course/704442b106bede897f692ed2d43f4f72f0163601
- Importing Data from Flat Files
- Importing Data From Excel Files
- Importing Data from Databases
- Importing JSON Data and Working with APIs
- https://www.datacamp.com/statement-of-accomplishment/course/13dd56296f5c167e1195a5da3abba3bc903d4018
- Database
- Enforce data consistency with attribute constraints
- Uniquely identify records with key constraints
- Glue together tables with foreign keys
- https://www.datacamp.com/statement-of-accomplishment/course/e86b4d288c4a4e47668d2d3a26271239a29bcefb
- Introduction to joins
- Outer joins and cross joins
- Set theory clauses
- Subqueries
- https://www.datacamp.com/statement-of-accomplishment/course/e6aadd798746f0675d4781a4062ce79c4ad5613d
- Basics of Relational Databases
- Applying Filtering, Ordering and Grouping to Queries
- Advanced SQL Queries
- Creating and Manipulating your own Databases
- https://www.datacamp.com/statement-of-accomplishment/track/df978de64672fadfd03c563736dfff3716e800b5
https://www.datacamp.com/statement-of-accomplishment/track/2fb743dfe6c9f233c6a524397a0cbbb5dae6633a
- Classification
- Regression
- Fine-tuning model
- Preprocessing and pipelines
- https://www.datacamp.com/statement-of-accomplishment/course/21e6baa27fd626ae83263c0cd9dafe7a0cda6fac
- Clustering for dataset exploration
- Visualization with hierarchical clustering and t-SNE
- Decorrelating your data and dimension reduction
- Discovering interpretable features
- https://www.datacamp.com/statement-of-accomplishment/course/e4d104a7675a916c87109b712dd30eb57fad2d08
- Applying logistic regression and SVM
- Loss functions
- Logistic regression
- Support Vector Machines
- https://www.datacamp.com/statement-of-accomplishment/course/19330af01adff2de8144113050c6e428e883c010
- Classification and Regression Trees
- The Bias-Variance Tradeoff
- Bagging and Random Forests
- Boosting
- Model Tuning
- https://www.datacamp.com/statement-of-accomplishment/course/3b7ed51db0388b988a276c94ceeebe543b3df94e
- Classification with XGBoost
- Regression with XGBoost
- Fine-tuning your XGBoost model
- Using XGBoost in pipelines
- https://www.datacamp.com/statement-of-accomplishment/course/3b7ed51db0388b988a276c94ceeebe543b3df94e
- Introduction to Clustering
- Hierarchical Clustering
- K-Means Clustering
- Clustering in Real World
- https://www.datacamp.com/statement-of-accomplishment/course/84e29075aea6af4231e9bac5740508402ef88fec
- Exploring high dimensional data
- Feature selection I, selecting for feature information
- Feature selection II, selecting for model accuracy
- Feature extraction
- https://www.datacamp.com/statement-of-accomplishment/course/05319ba262cd70d2075687ced39405af068963b7
- Introduction to Data Preprocessing
- Standardizing Data
- Feature Engineering
- Selecting features for modeling
- https://www.datacamp.com/statement-of-accomplishment/course/a4aed68dc195a266eb8fc65c9e13235f0f95f744
- Time Series and Machine Learning Primer
- Time Series as Inputs to a Model
- Predicting Time Series Data
- Validating and Inspecting Time Series Models
- https://www.datacamp.com/statement-of-accomplishment/course/0d24b7297ccf427dec2205b422c4287411177c0f
- Creating Features
- Dealing with Messy Data
- Conforming to Statistical Assumptions
- Dealing with Text Data
- https://www.datacamp.com/statement-of-accomplishment/course/908b14d25c1875215a4cd2b921a90d60394db883
- Basic Modeling in scikit-learn
- Validation Basics
- Cross Validation
- Selecting the best model with Hyperparameter tuning
- https://www.datacamp.com/statement-of-accomplishment/course/b8a1ca7ba4bcb9843811842e387e20cd234f0c2f
- Regular expressions & word tokenization
- Simple topic identification
- Named-entity recognition
- Building a "fake news" classifier
- https://www.datacamp.com/statement-of-accomplishment/course/9a5082f9587c06bb0d49993d92b3e7bf5023a438
- Basic features and readability scores
- Text preprocessing, POS tagging and NER
- N-Gram models
- TF-IDF and similarity scores
- https://www.datacamp.com/statement-of-accomplishment/course/5fc08b633beab972d9a8ed010f29d8a791b86c1f
- Introduction to TensorFlow
- Linear models
- Neural Networks
- High Level APIs
- https://www.datacamp.com/statement-of-accomplishment/course/24f47123941dccc8b6b55e0287b307c221203bb1
- Basics of deep learning and neural networks
- Optimizing a neural network with backward propagation
- Building deep learning models with keras
- Fine-tuning keras models
- https://www.datacamp.com/statement-of-accomplishment/course/845a8ecf7dc652b4c9d82061cc29b076fa385e3c
- Introducing Keras
- Binary, multi-class, and multi-label problems with neural networks
- Improving Model Performance
- Advanced Model Architectures
- https://www.datacamp.com/statement-of-accomplishment/course/2123aac85ff297d8ddbeaf09530d94832c509d1f
- The Keras Functional API
- Two Input Networks Using Categorical Embeddings, Shared Layers, and Merge Layers
- Multiple Inputs: 3 Inputs
- Multiple Outputs
- https://www.datacamp.com/statement-of-accomplishment/course/d9810fe288c78dbe92b0a8e73f70748874128de1
- Introducing Image Processing and scikit-image
- Filters, Contrast, Transformation and Morphology
- Image restoration, Noise, Segmentation and Contours
- Advanced Operations, Detecting Faces and Features
- https://www.datacamp.com/statement-of-accomplishment/course/91c49b07eb2a62a5c1257c3d2ea1efa0c77a05f9
- Image Processing With Neural Networks
- Convolutions
- Multiple convolutional layers into a deep network
- Understanding and Improving Deep Convolutional Networks
- https://www.datacamp.com/statement-of-accomplishment/course/e5ba3e450e3a1e315c29bd222b125b0981c993f7
- Hyperparameters and Parameters
- Grid search
- Random Search
- Informed Search
- https://www.datacamp.com/statement-of-accomplishment/course/b7b7610776af6814b702b32c15498061e692e61d
- Introduction to PySpark
- Manipulating data
- Getting started with machine learning pipelines
- Model tuning and selection
- https://www.datacamp.com/statement-of-accomplishment/course/0b2a9e787a061a507a42ee8f4c418760a1670524
- Apache Spark
- Programming in PySpark RDD’s
- PySpark SQL & DataFrames
- Machine Learning with PySpark MLlib
- https://www.datacamp.com/statement-of-accomplishment/course/b8fdf6f871bece26cdc133f3d3433b2b6883dbb7
- DataFrame details
- Manipulating DataFrames in the real world
- Improving Performance
- Complex processing and data pipelines
- https://www.datacamp.com/statement-of-accomplishment/course/c5ad387c02f74848dcac401052567355807890ec
- Exploratory Data Analysis
- Wrangling with Spark Functions
- Feature Engineering
- Building a Model
- https://www.datacamp.com/statement-of-accomplishment/course/81f3306b821a50a2053f4770f94edfee266d115e
- Recommendations engines
- Alternating Least Squares algorithm
- Cross-validated ALS model
- Real-life ALS recommendation engine
- https://www.datacamp.com/statement-of-accomplishment/course/a55e7ad416ee97c7868996247df383fbcc422394
- Introduction
- Classification
- Regression
- Ensembles & Pipelines
- https://www.datacamp.com/statement-of-accomplishment/course/d7a86227867044338047764edee1eac109aa7e35
- Kaggle competitions process
- Dive into the Competition
- Feature Engineering
- Modeling
- https://www.datacamp.com/statement-of-accomplishment/course/422886e116b36d4783898a3831213bfba2cc8832