-
Notifications
You must be signed in to change notification settings - Fork 174
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
new simple cpu limit strategy (#374)
New KRR strategy. the default simple strategy suggests to set cpu limits to none always. Some users use multi-tenants clusters and would like a strategy where cpu limit can be set to specific cpu percentile. New simple_limit strategy will support this use case. supports cpu request and limit percentiles and use them for the cpu recommendations.
- Loading branch information
Showing
2 changed files
with
192 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from .simple import SimpleStrategy | ||
from .simple import SimpleStrategy | ||
from .simple_limit import SimpleLimitStrategy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
import textwrap | ||
from datetime import timedelta | ||
|
||
import numpy as np | ||
import pydantic as pd | ||
|
||
from robusta_krr.core.abstract.strategies import ( | ||
BaseStrategy, | ||
K8sObjectData, | ||
MetricsPodData, | ||
PodsTimeData, | ||
ResourceRecommendation, | ||
ResourceType, | ||
RunResult, | ||
StrategySettings, | ||
) | ||
from robusta_krr.core.integrations.prometheus.metrics import ( | ||
CPUAmountLoader, | ||
MaxMemoryLoader, | ||
MemoryAmountLoader, | ||
CPULoader, | ||
PrometheusMetric, | ||
MaxOOMKilledMemoryLoader, | ||
) | ||
|
||
|
||
class SimpleLimitStrategySettings(StrategySettings): | ||
cpu_request: float = pd.Field(66, gt=0, le=100, description="The percentile to use for the CPU request.") | ||
cpu_limit: float = pd.Field(96, gt=0, le=100, description="The percentile to use for the CPU limit.") | ||
memory_buffer_percentage: float = pd.Field( | ||
15, gt=0, description="The percentage of added buffer to the peak memory usage for memory recommendation." | ||
) | ||
points_required: int = pd.Field( | ||
100, ge=1, description="The number of data points required to make a recommendation for a resource." | ||
) | ||
allow_hpa: bool = pd.Field( | ||
False, | ||
description="Whether to calculate recommendations even when there is an HPA scaler defined on that resource.", | ||
) | ||
use_oomkill_data: bool = pd.Field( | ||
False, | ||
description="Whether to bump the memory when OOMKills are detected (experimental).", | ||
) | ||
oom_memory_buffer_percentage: float = pd.Field( | ||
25, ge=0, description="What percentage to increase the memory when there are OOMKill events." | ||
) | ||
|
||
def calculate_memory_proposal(self, data: PodsTimeData, max_oomkill: float = 0) -> float: | ||
data_ = [np.max(values[:, 1]) for values in data.values()] | ||
if len(data_) == 0: | ||
return float("NaN") | ||
|
||
return max( | ||
np.max(data_) * (1 + self.memory_buffer_percentage / 100), | ||
max_oomkill * (1 + self.oom_memory_buffer_percentage / 100), | ||
) | ||
|
||
def calculate_cpu_percentile(self, data: PodsTimeData, percentile: float) -> float: | ||
if len(data) == 0: | ||
return float("NaN") | ||
|
||
if len(data) > 1: | ||
data_ = np.concatenate([values[:, 1] for values in data.values()]) | ||
else: | ||
data_ = list(data.values())[0][:, 1] | ||
|
||
return np.percentile(data_, percentile) | ||
|
||
def history_range_enough(self, history_range: tuple[timedelta, timedelta]) -> bool: | ||
start, end = history_range | ||
return (end - start) >= timedelta(hours=3) | ||
|
||
|
||
class SimpleLimitStrategy(BaseStrategy[SimpleLimitStrategySettings]): | ||
|
||
display_name = "simple_limit" | ||
rich_console = True | ||
|
||
@property | ||
def metrics(self) -> list[type[PrometheusMetric]]: | ||
metrics = [ | ||
CPULoader, | ||
MaxMemoryLoader, | ||
CPUAmountLoader, | ||
MemoryAmountLoader, | ||
] | ||
|
||
if self.settings.use_oomkill_data: | ||
metrics.append(MaxOOMKilledMemoryLoader) | ||
|
||
return metrics | ||
|
||
@property | ||
def description(self): | ||
s = textwrap.dedent(f"""\ | ||
CPU request: {self.settings.cpu_request}% percentile, limit: {self.settings.cpu_limit}% percentile | ||
Memory request: max + {self.settings.memory_buffer_percentage}%, limit: max + {self.settings.memory_buffer_percentage}% | ||
History: {self.settings.history_duration} hours | ||
Step: {self.settings.timeframe_duration} minutes | ||
All parameters can be customized. For example: `krr simple_limit --cpu_request=66 --cpu_limit=96 --memory_buffer_percentage=15 --history_duration=24 --timeframe_duration=0.5` | ||
""") | ||
|
||
if not self.settings.allow_hpa: | ||
s += "\n" + textwrap.dedent(f"""\ | ||
This strategy does not work with objects with HPA defined (Horizontal Pod Autoscaler). | ||
If HPA is defined for CPU or Memory, the strategy will return "?" for that resource. | ||
You can override this behaviour by passing the --allow-hpa flag | ||
""") | ||
|
||
s += "\nLearn more: [underline]https://github.com/robusta-dev/krr#algorithm[/underline]" | ||
return s | ||
|
||
def __calculate_cpu_proposal( | ||
self, history_data: MetricsPodData, object_data: K8sObjectData | ||
) -> ResourceRecommendation: | ||
data = history_data["CPULoader"] | ||
|
||
if len(data) == 0: | ||
return ResourceRecommendation.undefined(info="No data") | ||
|
||
# NOTE: metrics for each pod are returned as list[values] where values is [timestamp, value] | ||
# As CPUAmountLoader returns only the last value (1 point), [0, 1] is used to get the value | ||
# So each pod is string with pod name, and values is numpy array of shape (N, 2) | ||
data_count = {pod: values[0, 1] for pod, values in history_data["CPUAmountLoader"].items()} | ||
total_points_count = sum(data_count.values()) | ||
|
||
if total_points_count < self.settings.points_required: | ||
return ResourceRecommendation.undefined(info="Not enough data") | ||
|
||
if ( | ||
object_data.hpa is not None | ||
and object_data.hpa.target_cpu_utilization_percentage is not None | ||
and not self.settings.allow_hpa | ||
): | ||
return ResourceRecommendation.undefined(info="HPA detected") | ||
|
||
cpu_request = self.settings.calculate_cpu_percentile(data, self.settings.cpu_request) | ||
cpu_limit = self.settings.calculate_cpu_percentile(data, self.settings.cpu_limit) | ||
return ResourceRecommendation(request=cpu_request, limit=cpu_limit) | ||
|
||
def __calculate_memory_proposal( | ||
self, history_data: MetricsPodData, object_data: K8sObjectData | ||
) -> ResourceRecommendation: | ||
data = history_data["MaxMemoryLoader"] | ||
|
||
oomkill_detected = False | ||
|
||
if self.settings.use_oomkill_data: | ||
max_oomkill_data = history_data["MaxOOMKilledMemoryLoader"] | ||
# NOTE: metrics for each pod are returned as list[values] where values is [timestamp, value] | ||
# As MaxOOMKilledMemoryLoader returns only the last value (1 point), [0, 1] is used to get the value | ||
# So each value is numpy array of shape (N, 2) | ||
max_oomkill_value = ( | ||
np.max([values[0, 1] for values in max_oomkill_data.values()]) if len(max_oomkill_data) > 0 else 0 | ||
) | ||
if max_oomkill_value != 0: | ||
oomkill_detected = True | ||
else: | ||
max_oomkill_value = 0 | ||
|
||
if len(data) == 0: | ||
return ResourceRecommendation.undefined(info="No data") | ||
|
||
# NOTE: metrics for each pod are returned as list[values] where values is [timestamp, value] | ||
# As MemoryAmountLoader returns only the last value (1 point), [0, 1] is used to get the value | ||
# So each pod is string with pod name, and values is numpy array of shape (N, 2) | ||
data_count = {pod: values[0, 1] for pod, values in history_data["MemoryAmountLoader"].items()} | ||
total_points_count = sum(data_count.values()) | ||
|
||
if total_points_count < self.settings.points_required: | ||
return ResourceRecommendation.undefined(info="Not enough data") | ||
|
||
if ( | ||
object_data.hpa is not None | ||
and object_data.hpa.target_memory_utilization_percentage is not None | ||
and not self.settings.allow_hpa | ||
): | ||
return ResourceRecommendation.undefined(info="HPA detected") | ||
|
||
memory_usage = self.settings.calculate_memory_proposal(data, max_oomkill_value) | ||
return ResourceRecommendation( | ||
request=memory_usage, limit=memory_usage, info="OOMKill detected" if oomkill_detected else None | ||
) | ||
|
||
def run(self, history_data: MetricsPodData, object_data: K8sObjectData) -> RunResult: | ||
return { | ||
ResourceType.CPU: self.__calculate_cpu_proposal(history_data, object_data), | ||
ResourceType.Memory: self.__calculate_memory_proposal(history_data, object_data), | ||
} |