Skip to content

Commit

Permalink
new simple cpu limit strategy (#374)
Browse files Browse the repository at this point in the history
New KRR strategy.

the default simple strategy suggests to set cpu limits to none always.

Some users use multi-tenants clusters and would like a strategy where
cpu limit can be set to specific cpu percentile.

New simple_limit strategy will support this use case. supports cpu
request and limit percentiles and use them for the cpu recommendations.
  • Loading branch information
RoiGlinik authored Dec 10, 2024
1 parent 1da6221 commit 5a0c464
Show file tree
Hide file tree
Showing 2 changed files with 192 additions and 1 deletion.
3 changes: 2 additions & 1 deletion robusta_krr/strategies/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
from .simple import SimpleStrategy
from .simple import SimpleStrategy
from .simple_limit import SimpleLimitStrategy
190 changes: 190 additions & 0 deletions robusta_krr/strategies/simple_limit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
import textwrap
from datetime import timedelta

import numpy as np
import pydantic as pd

from robusta_krr.core.abstract.strategies import (
BaseStrategy,
K8sObjectData,
MetricsPodData,
PodsTimeData,
ResourceRecommendation,
ResourceType,
RunResult,
StrategySettings,
)
from robusta_krr.core.integrations.prometheus.metrics import (
CPUAmountLoader,
MaxMemoryLoader,
MemoryAmountLoader,
CPULoader,
PrometheusMetric,
MaxOOMKilledMemoryLoader,
)


class SimpleLimitStrategySettings(StrategySettings):
cpu_request: float = pd.Field(66, gt=0, le=100, description="The percentile to use for the CPU request.")
cpu_limit: float = pd.Field(96, gt=0, le=100, description="The percentile to use for the CPU limit.")
memory_buffer_percentage: float = pd.Field(
15, gt=0, description="The percentage of added buffer to the peak memory usage for memory recommendation."
)
points_required: int = pd.Field(
100, ge=1, description="The number of data points required to make a recommendation for a resource."
)
allow_hpa: bool = pd.Field(
False,
description="Whether to calculate recommendations even when there is an HPA scaler defined on that resource.",
)
use_oomkill_data: bool = pd.Field(
False,
description="Whether to bump the memory when OOMKills are detected (experimental).",
)
oom_memory_buffer_percentage: float = pd.Field(
25, ge=0, description="What percentage to increase the memory when there are OOMKill events."
)

def calculate_memory_proposal(self, data: PodsTimeData, max_oomkill: float = 0) -> float:
data_ = [np.max(values[:, 1]) for values in data.values()]
if len(data_) == 0:
return float("NaN")

return max(
np.max(data_) * (1 + self.memory_buffer_percentage / 100),
max_oomkill * (1 + self.oom_memory_buffer_percentage / 100),
)

def calculate_cpu_percentile(self, data: PodsTimeData, percentile: float) -> float:
if len(data) == 0:
return float("NaN")

if len(data) > 1:
data_ = np.concatenate([values[:, 1] for values in data.values()])
else:
data_ = list(data.values())[0][:, 1]

return np.percentile(data_, percentile)

def history_range_enough(self, history_range: tuple[timedelta, timedelta]) -> bool:
start, end = history_range
return (end - start) >= timedelta(hours=3)


class SimpleLimitStrategy(BaseStrategy[SimpleLimitStrategySettings]):

display_name = "simple_limit"
rich_console = True

@property
def metrics(self) -> list[type[PrometheusMetric]]:
metrics = [
CPULoader,
MaxMemoryLoader,
CPUAmountLoader,
MemoryAmountLoader,
]

if self.settings.use_oomkill_data:
metrics.append(MaxOOMKilledMemoryLoader)

return metrics

@property
def description(self):
s = textwrap.dedent(f"""\
CPU request: {self.settings.cpu_request}% percentile, limit: {self.settings.cpu_limit}% percentile
Memory request: max + {self.settings.memory_buffer_percentage}%, limit: max + {self.settings.memory_buffer_percentage}%
History: {self.settings.history_duration} hours
Step: {self.settings.timeframe_duration} minutes
All parameters can be customized. For example: `krr simple_limit --cpu_request=66 --cpu_limit=96 --memory_buffer_percentage=15 --history_duration=24 --timeframe_duration=0.5`
""")

if not self.settings.allow_hpa:
s += "\n" + textwrap.dedent(f"""\
This strategy does not work with objects with HPA defined (Horizontal Pod Autoscaler).
If HPA is defined for CPU or Memory, the strategy will return "?" for that resource.
You can override this behaviour by passing the --allow-hpa flag
""")

s += "\nLearn more: [underline]https://github.com/robusta-dev/krr#algorithm[/underline]"
return s

def __calculate_cpu_proposal(
self, history_data: MetricsPodData, object_data: K8sObjectData
) -> ResourceRecommendation:
data = history_data["CPULoader"]

if len(data) == 0:
return ResourceRecommendation.undefined(info="No data")

# NOTE: metrics for each pod are returned as list[values] where values is [timestamp, value]
# As CPUAmountLoader returns only the last value (1 point), [0, 1] is used to get the value
# So each pod is string with pod name, and values is numpy array of shape (N, 2)
data_count = {pod: values[0, 1] for pod, values in history_data["CPUAmountLoader"].items()}
total_points_count = sum(data_count.values())

if total_points_count < self.settings.points_required:
return ResourceRecommendation.undefined(info="Not enough data")

if (
object_data.hpa is not None
and object_data.hpa.target_cpu_utilization_percentage is not None
and not self.settings.allow_hpa
):
return ResourceRecommendation.undefined(info="HPA detected")

cpu_request = self.settings.calculate_cpu_percentile(data, self.settings.cpu_request)
cpu_limit = self.settings.calculate_cpu_percentile(data, self.settings.cpu_limit)
return ResourceRecommendation(request=cpu_request, limit=cpu_limit)

def __calculate_memory_proposal(
self, history_data: MetricsPodData, object_data: K8sObjectData
) -> ResourceRecommendation:
data = history_data["MaxMemoryLoader"]

oomkill_detected = False

if self.settings.use_oomkill_data:
max_oomkill_data = history_data["MaxOOMKilledMemoryLoader"]
# NOTE: metrics for each pod are returned as list[values] where values is [timestamp, value]
# As MaxOOMKilledMemoryLoader returns only the last value (1 point), [0, 1] is used to get the value
# So each value is numpy array of shape (N, 2)
max_oomkill_value = (
np.max([values[0, 1] for values in max_oomkill_data.values()]) if len(max_oomkill_data) > 0 else 0
)
if max_oomkill_value != 0:
oomkill_detected = True
else:
max_oomkill_value = 0

if len(data) == 0:
return ResourceRecommendation.undefined(info="No data")

# NOTE: metrics for each pod are returned as list[values] where values is [timestamp, value]
# As MemoryAmountLoader returns only the last value (1 point), [0, 1] is used to get the value
# So each pod is string with pod name, and values is numpy array of shape (N, 2)
data_count = {pod: values[0, 1] for pod, values in history_data["MemoryAmountLoader"].items()}
total_points_count = sum(data_count.values())

if total_points_count < self.settings.points_required:
return ResourceRecommendation.undefined(info="Not enough data")

if (
object_data.hpa is not None
and object_data.hpa.target_memory_utilization_percentage is not None
and not self.settings.allow_hpa
):
return ResourceRecommendation.undefined(info="HPA detected")

memory_usage = self.settings.calculate_memory_proposal(data, max_oomkill_value)
return ResourceRecommendation(
request=memory_usage, limit=memory_usage, info="OOMKill detected" if oomkill_detected else None
)

def run(self, history_data: MetricsPodData, object_data: K8sObjectData) -> RunResult:
return {
ResourceType.CPU: self.__calculate_cpu_proposal(history_data, object_data),
ResourceType.Memory: self.__calculate_memory_proposal(history_data, object_data),
}

0 comments on commit 5a0c464

Please sign in to comment.