-
Notifications
You must be signed in to change notification settings - Fork 12
/
plot_cov.py
executable file
·162 lines (143 loc) · 6.55 KB
/
plot_cov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
# Some code in this file was adapted from TLIO
# https://github.com/CathIAS/TLIO
# Here is the code license for TLIO
###################################################################################
# BSD License
#
# For TLIO training and inference software
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name Facebook nor the names of its contributors may be used to
# endorse or promote products derived from this software without specific
# prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###################################################################################
import os
import cv2
import torch
import shutil
import datetime
import numpy as np
from psutil import virtual_memory
from time import time, strftime, mktime
import matplotlib.lines as mlines
from matplotlib import pyplot as plt
plt.rcParams.update({
"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": ["Helvetica"]})
import torch.nn.functional as F
from torch.utils.data import DataLoader, ConcatDataset
from lib.utils import utils
from lib.datasets import bop
from lib.labeling import kp_config
from lib.models.pkpnet import PkpNet
from lib.utils.training_utils import DataParallelWrapper, collate_fn
def plot_sigmas(errs, sigmas, savepath=None,
ticksize=12, fontsize=14, tickfont="Crimson Text", fontname="Crimson Text"):
fig, axs = plt.subplots(nrows=1, ncols=1, figsize=(3, 3), dpi=200)
plt.sca(axs)
plt.scatter(errs, sigmas, s=0.3)
l = mlines.Line2D([-3, 3], [-1, 1], color="r", linestyle="--", linewidth=0.7)
axs.add_line(l)
l = mlines.Line2D([3, -3], [-1, 1], color="r", linestyle="--", linewidth=0.7)
axs.add_line(l)
plt.xlim((-2, 2))
plt.ylim((0.0, 1.0))
plt.setp(axs.get_xticklabels(), fontsize=ticksize, fontname=tickfont)
plt.setp(axs.get_yticklabels(), fontsize=ticksize, fontname=tickfont)
plt.grid(True)
axs.set_ylabel("$\sigma$", fontsize=fontsize, fontname=fontname)
axs.set_xlabel("$uv$ error", fontsize=fontsize, fontname=fontname)
plt.tight_layout(pad=0.2)
if savepath is not None:
print("Saving plot to", savepath)
plt.savefig(savepath)
plt.show()
def main():
from lib.args import get_args
args = get_args('eval')
model = PkpNet(input_res=bop.IMAGE_SIZE)
chkpt_path = args.checkpoint_path
assert os.path.isfile(chkpt_path), \
"=> no checkpoint found at '{}'".format(chkpt_path)
print("=> loading checkpoint '{}'".format(chkpt_path))
checkpoint = torch.load(chkpt_path)
model.load_state_dict(checkpoint['model'])
if torch.cuda.is_available():
print(f"Found CUDA")
model = model.cuda()
else:
print("WARNING: No CUDA found.")
model.calc_cov = True
print(f"Loading initial data from {args.data_root}...")
# Use the train pbr split (every `skip`th image)
# which has perfect ground truth unlike the YCB real test set.
# We want perfect ground truth to actually look at the keypoint error
# NOTE: You CAN NOT use this set here if you trained with it!
skip = 100
eval_dataset = bop.BopDataset(args.data_root, "train_pbr",
bop_dset=args.dataset, skip=skip, det_type="gt", no_aug=True)
eval_loader = DataLoader(eval_dataset, batch_size=1,
shuffle=False, num_workers=0, collate_fn=collate_fn)
model.eval()
errs = []
sigmas = []
num_inlier = 0
n = 0
for i, sample in enumerate(eval_loader):
with torch.no_grad():
print(f"Running {i+1}/{len(eval_loader)}", end="\r", flush=True)
image, bboxes = sample["img"], sample["bboxes"]
priors, target, kp_mask = sample["priors"], sample["kp_uvs"], sample["kp_masks"]
# We can concat all but bboxes and priors, since they need to stay in
# list form for forward.
# Images are already stacked.
target, kp_mask = torch.cat(target), torch.cat(kp_mask)
if torch.cuda.is_available():
image, target, kp_mask = [x.cuda() for x in [image, target, kp_mask]]
bboxes, priors = [b.cuda() for b in bboxes], [p.cuda() for p in priors]
pred = model(images=image, boxes=bboxes)
err = (target - pred["uv"])[kp_mask]
sigma = pred["cov"][kp_mask][...,[0,1],[0,1]].sqrt() # Stdev
chi2 = err.unsqueeze(-2) @ torch.inverse(pred["cov"][kp_mask]) \
@ err.unsqueeze(-1)
n += chi2.numel()
# 99% confidence threshold for 2D chi2 distribution
num_inlier += (chi2 <= 9.210).count_nonzero().item()
assert sigma.shape == err.shape
errs.append(err.cpu().numpy().reshape(-1))
sigmas.append(sigma.cpu().numpy().reshape(-1))
#if i > 30:
# break
print("\n\nDone.")
print("Percent inside 99% confidence bounds:", float(num_inlier)/n)
with open(os.path.join(os.path.dirname(args.checkpoint_path), \
"percent_sigma_inbounds.txt"), 'w') as f:
print("Percent inside bounds:", float(num_inlier)/n, file=f)
plot_sigmas(np.concatenate(errs), np.concatenate(sigmas),
savepath=os.path.join(os.path.dirname(args.checkpoint_path), "sigma_plot.png"))
if __name__ == '__main__':
main()