Skip to content

Commit

Permalink
feat: add sabr and duffie-lan
Browse files Browse the repository at this point in the history
  • Loading branch information
dancixx committed Jul 19, 2024
1 parent 0323043 commit 0af780b
Show file tree
Hide file tree
Showing 7 changed files with 182 additions and 11 deletions.
2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
name = "stochastic-rs"
version = "0.5.1"
version = "0.5.2"
edition = "2021"
license = "MIT"
description = "A Rust library for stochastic processes"
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,8 @@ Documentation is available at [stochastic-rs](https://docs.rs/stochastic-rs/).
- [x] Merton model
- [x] Bates model
- [x] Vasicek model
- [x] SABR model (unstable)
- [x] Duffie-Kan model (unstable)


# Fractional Stochastic processes
Expand All @@ -52,7 +54,6 @@ Documentation is available at [stochastic-rs](https://docs.rs/stochastic-rs/).
- [ ] Rough Heston model
- [ ] Bergomi model
- [ ] Rough Bergomi model
- [ ] SABR model
- [ ] Hull-White model
- [ ] Barndorff-Nielsen & Shephard model
- [ ] Alpha-stable models
Expand All @@ -63,7 +64,6 @@ Documentation is available at [stochastic-rs](https://docs.rs/stochastic-rs/).
- [ ] Wu-Zhang model
- [ ] Affine model
- [ ] Heath-Jarrow-Morton model & Multi-factor Heath-Jarrow-Morton model
- [ ] Duffie-Kan model

## Future work
- [x] Add more tests
Expand Down
76 changes: 76 additions & 0 deletions src/models/duffie_kan.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
use ndarray::Array1;

use crate::processes::correlated::correlated_bms;

/// Generates paths for the Duffie-Kan multifactor interest rate model.
///
/// The Duffie-Kan model is a multifactor interest rate model incorporating correlated Brownian motions,
/// used in financial mathematics for modeling interest rates.
///
/// # Parameters
///
/// - `alpha`: The drift term coefficient for the Brownian motion.
/// - `beta`: The drift term coefficient for the Brownian motion.
/// - `gamma`: The drift term coefficient for the Brownian motion.
/// - `rho`: The correlation between the two Brownian motions.
/// - `a1`: The coefficient for the `r` term in the drift of `r`.
/// - `b1`: The coefficient for the `x` term in the drift of `r`.
/// - `c1`: The constant term in the drift of `r`.
/// - `sigma1`: The diffusion coefficient for the `r` process.
/// - `a2`: The coefficient for the `r` term in the drift of `x`.
/// - `b2`: The coefficient for the `x` term in the drift of `x`.
/// - `c2`: The constant term in the drift of `x`.
/// - `sigma2`: The diffusion coefficient for the `x` process.
/// - `n`: Number of time steps.
/// - `r0`: Initial value of the `r` process (optional, defaults to 0.0).
/// - `x0`: Initial value of the `x` process (optional, defaults to 0.0).
/// - `t`: Total time (optional, defaults to 1.0).
///
/// # Returns
///
/// A tuple of two `Vec<f64>` representing the generated paths for the `r` and `x` processes.
///
/// # Example
///
/// ```
/// let (r_path, x_path) = duffie_kan(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1000, Some(0.05), Some(0.02), Some(1.0));
/// ```
#[allow(clippy::many_single_char_names)]
pub fn duffie_kan(
alpha: f64,
beta: f64,
gamma: f64,
rho: f64,
a1: f64,
b1: f64,
c1: f64,
sigma1: f64,
a2: f64,
b2: f64,
c2: f64,
sigma2: f64,
n: usize,
r0: Option<f64>,
x0: Option<f64>,
t: Option<f64>,
) -> (Vec<f64>, Vec<f64>) {
let correlated_bms = correlated_bms(rho, n, t);
let dt = t.unwrap_or(1.0) / n as f64;

let mut r = Array1::<f64>::zeros(n);
let mut x = Array1::<f64>::zeros(n);

r[0] = r0.unwrap_or(0.0);
x[0] = x0.unwrap_or(0.0);

for i in 1..n {
r[i] = r[i - 1]
+ (a1 * r[i - 1] + b1 * x[i - 1] + c1) * dt
+ sigma1 * (alpha * r[i - 1] + beta * x[i - 1] + gamma) * correlated_bms[0][i - 1];
x[i] = x[i - 1]
+ (a2 * r[i - 1] + b2 * x[i - 1] + c2) * dt
+ sigma2 * (alpha * r[i - 1] + beta * x[i - 1] + gamma) * correlated_bms[1][i - 1];
}

(r.to_vec(), x.to_vec())
}
14 changes: 14 additions & 0 deletions src/models/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,23 @@
//!
//! The following diffusion processes are implemented:
//!
//! - Duffie-Kan Model
//! - The Duffie-Kan model is a multifactor interest rate model incorporating correlated Brownian motions.
//! - SDE: dr(t) = (a1 * r(t) + b1 * x(t) + c1) * dt + sigma1 * (alpha * r(t) + beta * x(t) + gamma) * dW_r(t)
//! - SDE: dx(t) = (a2 * r(t) + b2 * x(t) + c2) * dt + sigma2 * (alpha * r(t) + beta * x(t) + gamma) * dW_x(t)
//! - where Corr(W_r(t), W_x(t)) = rho
//!
//! - **Heston Model**
//! - A stochastic volatility model used to describe the evolution of the volatility of an underlying asset.
//! - SDE: `dS(t) = mu * S(t) * dt + S(t) * sqrt(V(t)) * dW_1(t)`
//! - SDE: `dV(t) = kappa * (theta - V(t)) * dt + eta * sqrt(V(t)) * dW_2(t)`
//!
//! - SABR (Stochastic Alpha, Beta, Rho) Model
//! - Widely used in financial mathematics for modeling stochastic volatility.
//! - SDE: dF(t) = V(t) * F(t)^beta * dW_F(t)
//! - SDE: dV(t) = alpha * V(t) * dW_V(t)
//! - where Corr(W_F(t), W_V(t)) = rho
//!
//! - **Vasicek Model**
//! - An Ornstein-Uhlenbeck process used to model interest rates.
//! - SDE: `dX(t) = theta * (mu - X(t)) * dt + sigma * dW(t)`
Expand All @@ -17,5 +29,7 @@
//!
//! Each process has its own module and functions to generate sample paths.
pub mod duffie_kan;
pub mod heston;
pub mod sabr;
pub mod vasicek;
83 changes: 83 additions & 0 deletions src/models/sabr.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
use ndarray::Array1;

use crate::prelude::correlated::correlated_bms;

/// Generates a path of the SABR (Stochastic Alpha, Beta, Rho) model.
///
/// The SABR model is widely used in financial mathematics for modeling stochastic volatility.
/// It incorporates correlated Brownian motions to simulate the underlying asset price and volatility.
///
/// # Parameters
///
/// - `alpha`: The volatility of volatility.
/// - `beta`: The elasticity parameter, must be in the range (0, 1).
/// - `rho`: The correlation between the asset price and volatility, must be in the range (-1, 1).
/// - `n`: Number of time steps.
/// - `f0`: Initial value of the forward rate (optional, defaults to 0.0).
/// - `v0`: Initial value of the volatility (optional, defaults to 0.0).
/// - `t`: Total time (optional, defaults to 1.0).
///
/// # Returns
///
/// A tuple of two `Vec<f64>` representing the generated paths for the forward rate and volatility.
///
/// # Example
///
/// ```
/// let (forward_rate_path, volatility_path) = sabr(0.2, 0.5, -0.3, 1000, Some(0.04), Some(0.2), Some(1.0));
/// ```
pub fn sabr(
alpha: f64,
beta: f64,
rho: f64,
n: usize,
f0: Option<f64>,
v0: Option<f64>,
t: Option<f64>,
) -> (Vec<f64>, Vec<f64>) {
if !(0.0..1.0).contains(&beta) {
panic!("Beta parameter must be in (0, 1)")
}

if !(-1.0..1.0).contains(&rho) {
panic!("Rho parameter must be in (-1, 1)")
}

if alpha < 0.0 {
panic!("Alpha parameter must be positive")
}

let correlated_bms = correlated_bms(rho, n, t);

let mut f = Array1::<f64>::zeros(n);
let mut v = Array1::<f64>::zeros(n);

f[0] = f0.unwrap_or(0.0);
v[0] = v0.unwrap_or(0.0);

for i in 0..n {
f[i] = f[i - 1] + v[i - 1] * f[i - 1].powf(beta) * correlated_bms[0][i - 1];
v[i] = v[i - 1] + alpha * v[i - 1] * correlated_bms[1][i - 1];
}

(f.to_vec(), v.to_vec())
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_sabr() {
let alpha = 0.2;
let beta = 0.5;
let rho = -0.3;
let n = 1000;
let f0 = Some(0.04);
let v0 = Some(0.2);
let t = Some(1.0);
let (f, v) = sabr(alpha, beta, rho, n, f0, v0, t);
assert_eq!(f.len(), n);
assert_eq!(v.len(), n);
}
}
8 changes: 4 additions & 4 deletions src/noises/fgn.rs
Original file line number Diff line number Diff line change
Expand Up @@ -69,9 +69,9 @@ impl FgnFft {
)
.unwrap();
let data = r.mapv(|v| Complex::new(v, 0.0));
let mut r_fft = FftHandler::new(r.len());
let r_fft = FftHandler::new(r.len());
let mut sqrt_eigenvalues = Array1::<Complex<f64>>::zeros(r.len());
ndfft_par(&data, &mut sqrt_eigenvalues, &mut r_fft, 0);
ndfft_par(&data, &mut sqrt_eigenvalues, &r_fft, 0);
sqrt_eigenvalues.par_mapv_inplace(|x| Complex::new((x.re / (2.0 * n as f64)).sqrt(), x.im));

Self {
Expand Down Expand Up @@ -106,9 +106,9 @@ impl Generator for FgnFft {
ComplexDistribution::new(StandardNormal, StandardNormal),
);
let fgn = &self.sqrt_eigenvalues * &rnd;
let mut fft_handler = self.fft_handler.clone();
let fft_handler = self.fft_handler.clone();
let mut fgn_fft = self.fft_fgn.clone();
ndfft_par(&fgn, &mut fgn_fft, &mut fft_handler, 0);
ndfft_par(&fgn, &mut fgn_fft, &fft_handler, 0);
let fgn = fgn_fft
.slice(s![1..self.n - self.offset + 1])
.mapv(|x: Complex<f64>| (x.re * (self.n as f64).powf(-self.hurst)) * self.t.powf(self.hurst));
Expand Down
6 changes: 2 additions & 4 deletions src/processes/poisson.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
use std::ops::Add;

use ndarray::{Array0, Array1, Axis, Dim};
use ndarray_rand::rand_distr::Normal;
use ndarray_rand::rand_distr::{Distribution, Exp};
use ndarray_rand::rand_distr::{Normal, Poisson};
use ndarray_rand::RandomExt;
use rand::thread_rng;

Expand Down Expand Up @@ -132,7 +130,7 @@ mod tests {
let n = 1000;
let lambda = 2.0;
let t = 10.0;
let cp = compound_poisson(n, lambda, None, Some(t), None, None);
let (.., cp) = compound_poisson(n, lambda, None, Some(t), None);
assert_eq!(cp.len(), n);
}
}

0 comments on commit 0af780b

Please sign in to comment.