-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
486 lines (424 loc) · 24.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import cv2
import numpy as np
import json
import math
import os
import argparse
import time
import copy
import torch
import torch.nn as nn
from torch.utils import data
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
from efficientnet_pytorch import EfficientNet
from losses import CB_loss
from dataset import DATASET
from dataset import DATASET_VAL_TEST
Mtype = "bg_weights_cb"
parser = argparse.ArgumentParser(description='Training single stage FPN with OHEM, resnet as backbone')
parser.add_argument('--DATA_ROOT', help='Location to root directory for dataset reading') # Data/contiguous_videos
parser.add_argument('--SAVE_ROOT', help='Location to root directory for saving checkpoint models') # Data/contiguous_videos
parser.add_argument('--MODE', default='train',
help='MODE can be all, train, val, and test')
# data loading argumnets
parser.add_argument('-b','--BATCH_SIZE', default=64,
type=int, help='Batch size for training')
parser.add_argument('--VAL_BATCH_SIZE', default=64,
type=int, help='Batch size for testing')
parser.add_argument('--TEST_BATCH_SIZE', default=64,
type=int, help='Batch size for testing')
# Number of worker to load data in parllel
parser.add_argument('--NUM_WORKERS', '-j', default=8,
type=int, help='Number of workers used in dataloading')
parser.add_argument('--MAX_EPOCHS', default=1,
type=int, help='Number of training epoc')
parser.add_argument('--VAL_EPOCHS', default=1,
type=int, help='Number of training epoc')
parser.add_argument('-l','--learning_rate',
default=0.001, type=float, help='initial learning rate')
parser.add_argument('--device', default='cuda', type=str, help='device type CPU or CUDA')
## Parse arguments
args = parser.parse_args()
class AutoDict(dict):
def __missing__(self, k):
self[k] = AutoDict()
return self[k]
def train(model, device, train_loader, criterion,optimizer,scheduler,train_len,nb_classes,samples_per_cls, num_epochs):
log_file = open(args.SAVE_ROOT+"/"+Mtype+"_training.log","w",1)
since = time.time()
beta = 0.9999
gamma = 2.0
loss_type = "focal"
for epoch in range(1,num_epochs+1):
confusion_matrix = np.zeros((nb_classes, nb_classes),dtype=int)
print('Training Epoch {}/{}\n'.format(epoch, num_epochs))
print('-' * 10)
log_file.write('Training Epoch {}/{}\n'.format(epoch, num_epochs))
log_file.write('-' * 10+ '\n')
running_loss = 0.0
running_corrects = 0
model.train()
#print(len(train_loader))
for batch_idx, (X, y,vid_names,frame_nums,_) in enumerate(train_loader):
# print(batch_idx)
optimizer.zero_grad()
with torch.set_grad_enabled(True):
X, y = X.cuda(), y.cuda()
y = torch.squeeze(y)
outputs = model(X)
_, preds = torch.max(outputs, 1)
loss = CB_loss(y.cpu(), outputs.cpu(), samples_per_cls, nb_classes,loss_type, beta, gamma)
#loss = criterion(outputs, y)
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * X.size(0)
running_corrects += torch.sum(preds == y.data)
# print(running_corrects)
for t, p in zip(y.view(-1), preds.view(-1)):
confusion_matrix[t, p] += 1
scheduler.step()
epoch_loss = running_loss / train_len
epoch_acc = running_corrects.double() / train_len
print('{} Loss: {:.4f} Acc: {:.4f}\n'.format('Train', epoch_loss, epoch_acc))
print(confusion_matrix)
log_file.write('{} Loss: {:.4f} Acc: {:.4f}\n'.format('Train', epoch_loss, epoch_acc))
log_file.write(str(confusion_matrix))
log_file.write('\n')
return model,optimizer,scheduler
def evaluate_val(model, device, criterion,optimizer,scheduler,val_loader, num_epochs):
val_json = AutoDict()
for epoch in range(1,num_epochs+1):
print('Evaluation without self-training Epoch {}/{}\n'.format(epoch, num_epochs))
print('-' * 10)
for batch_idx, (X, y,vid_names,frame_nums,category) in enumerate(val_loader):
model.eval()
optimizer.zero_grad()
outputs = model(X)
_, label = torch.max(outputs, 1)
for i in range(len(frame_nums)):
lab = label[i].item()
val_json[category[i]]['validation_split']['videos'][vid_names[i]]['frames']['{:05d}.jpg'.format(frame_nums[i].item())] = lab
with open(args.SAVE_ROOT+'/'+Mtype+'_Activity_challenge_val_predictions_nost.json', 'w') as outfile:
json.dump(val_json, outfile)
return model
def evaluate_test(model, device, criterion,optimizer,scheduler,test_loader, num_epochs):
test_json = AutoDict()
for epoch in range(1,num_epochs+1):
print('Evaluation without self-training Epoch {}/{}\n'.format(epoch, num_epochs))
print('-' * 10)
for batch_idx, (X, y,vid_names,frame_nums,category) in enumerate(test_loader):
model.eval()
optimizer.zero_grad()
outputs = model(X)
_, label = torch.max(outputs, 1)
for i in range(len(frame_nums)):
lab = label[i].item()
test_json[category[i]]['test_split']['videos'][vid_names[i]]['frames']['{:05d}.jpg'.format(frame_nums[i].item())] = lab
with open(args.SAVE_ROOT+'/'+Mtype+'_Activity_challenge_test_predictions_nost.json', 'w') as outfile:
json.dump(test_json, outfile)
return model
def self_val(model, device, criterion,optimizer,scheduler,val_params,transform,nb_classes, samples_per_cls,num_epochs,thresh=0.4):
val_json = AutoDict()
beta = 0.9999
gamma = 2.0
loss_type = "focal"
for epoch in range(1,num_epochs+1):
print('Self Training Val-Fold Epoch {}/{}\n'.format(epoch, num_epochs))
print('-' * 10)
with open(args.DATA_ROOT +'/Annotation.json') as json_file:
annoData = json.load(json_file)
for category in ['contiguous_videos', 'short_gap', 'long_gap']:
val_videos = annoData[category]['validation_split']['videos']
for val_vid_name in val_videos:
val_model = copy.deepcopy(model)
num_sessions = 5
val_sessions_list = []
val_len = len(os.listdir(os.path.join(args.DATA_ROOT,category,'rgb-images',val_vid_name)))
ses = int(9000/num_sessions)
for i in range(1,9000,ses):
val_sessions_list.append(i)
val_sessions_list.append(val_len)
print("Validation video: ", val_vid_name)
##########Validation
for val_inc in range(len(val_sessions_list)-1):
print("Session: ", val_inc)
val_start_sess = val_sessions_list[val_inc]
val_end_sess = val_sessions_list[val_inc+1]
val_set = DATASET_VAL_TEST(args,category,val_vid_name,val_start_sess,val_end_sess,transform=transform)
val_loader = data.DataLoader(val_set, **val_params)
#######Self-training
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(val_loader):
val_model.eval()
optimizer.zero_grad()
sudo_outputs = val_model(X)
_, sudo_y = torch.max(sudo_outputs, 1)
for i in range(len(frame_nums)):
if sudo_outputs[i][sudo_y[i].item()] > thresh:
val_model.train()
optimizer.zero_grad()
with torch.set_grad_enabled(True):
X_ = torch.unsqueeze(X[i].cuda(),0)
y_ = torch.tensor([sudo_y[i].item()]).cuda()
outputs = val_model(X_)
_, preds = torch.max(outputs, 1)
loss = CB_loss(y_.cpu(), outputs.cpu(), samples_per_cls, nb_classes,loss_type, beta, gamma)
#loss = criterion(outputs, y_)
loss.backward()
optimizer.step()
#######Evaluation
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(val_loader):
val_model.eval()
optimizer.zero_grad()
outputs = val_model(X)
_, label = torch.max(outputs, 1)
for i in range(len(frame_nums)):
lab = label[i].item()
val_json[category]['validation_split']['videos'][vid_names[i]]['frames']['{:05d}.jpg'.format(frame_nums[i].item())] = lab
with open(args.SAVE_ROOT+'/'+Mtype+'_Activity_challenge_self_val_predictions_st.json', 'w') as outfile:
json.dump(val_json, outfile)
return model
def self_test(model, device, criterion,optimizer,scheduler,test_params,transform,nb_classes, samples_per_cls,num_epochs,thresh=0.4):
test_json = AutoDict()
beta = 0.9999
gamma = 2.0
loss_type = "focal"
for epoch in range(1,num_epochs+1):
print('Self Training Test-Fold Epoch {}/{}\n'.format(epoch, num_epochs))
print('-' * 10)
with open(args.DATA_ROOT +'/Annotation.json') as json_file:
annoData = json.load(json_file)
for category in ['contiguous_videos', 'short_gap', 'long_gap']:
test_videos = annoData[category]['test_split']['videos']
for test_vid_name in test_videos:
test_model = copy.deepcopy(model)
num_sessions = 5
test_sessions_list = []
test_len = len(os.listdir(os.path.join(args.DATA_ROOT,category,'rgb-images',test_vid_name)))
ses = int(9000/num_sessions)
for i in range(1,9000,ses):
test_sessions_list.append(i)
test_sessions_list.append(test_len)
##########Testing
print("Testing video: ", test_vid_name)
for test_inc in range(len(test_sessions_list)-1):
print("Session: ", test_inc)
test_start_sess = test_sessions_list[test_inc]
test_end_sess = test_sessions_list[test_inc+1]
test_set = DATASET_VAL_TEST(args,category,test_vid_name,test_start_sess,test_end_sess,transform=transform)
test_loader = data.DataLoader(test_set, **test_params)
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(test_loader):
test_model.eval()
optimizer.zero_grad()
sudo_outputs = test_model(X)
_, sudo_y = torch.max(sudo_outputs, 1)
for i in range(len(frame_nums)):
if sudo_outputs[i][sudo_y[i].item()] > thresh:
test_model.train()
optimizer.zero_grad()
with torch.set_grad_enabled(True):
X_ = torch.unsqueeze(X[i].cuda(),0)
y_ = torch.tensor([sudo_y[i].item()]).cuda()
outputs = test_model(X_)
_, preds = torch.max(outputs, 1)
loss = CB_loss(y_.cpu(), outputs.cpu(), samples_per_cls, nb_classes,loss_type, beta, gamma)
#loss = criterion(outputs, y_)
loss.backward()
optimizer.step()
#######Evaluation
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(test_loader):
test_model.eval()
optimizer.zero_grad()
outputs = test_model(X)
_, label = torch.max(outputs, 1)
for i in range(len(frame_nums)):
lab = label[i].item()
test_json[category]['test_split']['videos'][vid_names[i]]['frames']['{:05d}.jpg'.format(frame_nums[i].item())] = lab
with open(args.SAVE_ROOT+'/'+Mtype+'_Activity_challenge_self_test_predictions_st.json', 'w') as outfile:
json.dump(test_json, outfile)
return model
def self_val_test_combine(model, device, criterion,optimizer,scheduler,val_params,test_params,transform,nb_classes, samples_per_cls,num_epochs,thresh=0.4):
log_file = open(args.SAVE_ROOT+"/"+Mtype+"_validation.log","w",1)
val_json = AutoDict()
test_json = AutoDict()
beta = 0.9999
gamma = 2.0
loss_type = "focal"
for epoch in range(1,num_epochs+1):
confusion_matrix = np.zeros((nb_classes, nb_classes),dtype=int)
print('Self Training Validation/Test Fold combine Epoch {}/{}\n'.format(epoch, num_epochs))
print('-' * 10)
log_file.write('Validation/Self Training Epoch {}/{}\n'.format(epoch, num_epochs))
log_file.write('-' * 10+ '\n')
running_loss = 0.0
running_corrects = 0
with open(args.DATA_ROOT +'/Annotation.json') as json_file:
annoData = json.load(json_file)
for category in ['contiguous_videos', 'short_gap', 'long_gap']:
val_videos = annoData[category]['validation_split']['videos']
test_videos = annoData[category]['test_split']['videos']
for val_vid_name,test_vid_name in zip(val_videos,test_videos):
val_model = copy.deepcopy(model)
num_sessions = 5
val_sessions_list = []
test_sessions_list = []
val_len = len(os.listdir(os.path.join(args.DATA_ROOT,category,'rgb-images',val_vid_name)))
test_len = len(os.listdir(os.path.join(args.DATA_ROOT,category,'rgb-images',test_vid_name)))
ses = int(9000/num_sessions)
for i in range(1,9000,ses):
val_sessions_list.append(i)
test_sessions_list.append(i)
val_sessions_list.append(val_len)
test_sessions_list.append(test_len)
print("Validation video: ", val_vid_name)
##########Validation
for val_inc in range(len(val_sessions_list)-1):
print("Session: ", val_inc)
val_start_sess = val_sessions_list[val_inc]
val_end_sess = val_sessions_list[val_inc+1]
val_set = DATASET_VAL_TEST(args,category,val_vid_name,val_start_sess,val_end_sess,transform=transform)
val_loader = data.DataLoader(val_set, **val_params)
#######Self-training
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(val_loader):
val_model.eval()
optimizer.zero_grad()
sudo_outputs = val_model(X)
_, sudo_y = torch.max(sudo_outputs, 1)
for i in range(len(frame_nums)):
if sudo_outputs[i][sudo_y[i].item()] > thresh:
val_model.train()
optimizer.zero_grad()
with torch.set_grad_enabled(True):
X_ = torch.unsqueeze(X[i].cuda(),0)
y_ = torch.tensor([sudo_y[i].item()]).cuda()
outputs = val_model(X_)
_, preds = torch.max(outputs, 1)
loss = CB_loss(y_.cpu(), outputs.cpu(), samples_per_cls, nb_classes,loss_type, beta, gamma)
#loss = criterion(outputs, y_)
loss.backward()
optimizer.step()
#######Evaluation
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(val_loader):
val_model.eval()
optimizer.zero_grad()
outputs = val_model(X)
_, label = torch.max(outputs, 1)
for i in range(len(frame_nums)):
lab = label[i].item()
val_json[category]['validation_split']['videos'][vid_names[i]]['frames']['{:05d}.jpg'.format(frame_nums[i].item())] = lab
##########Testing
print("Testing video: ", test_vid_name)
for test_inc in range(len(test_sessions_list)-1):
print("Session: ", test_inc)
test_start_sess = test_sessions_list[test_inc]
test_end_sess = test_sessions_list[test_inc+1]
test_set = DATASET_VAL_TEST(args,category,test_vid_name,test_start_sess,test_end_sess,transform=transform)
test_loader = data.DataLoader(test_set, **test_params)
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(test_loader):
val_model.eval()
optimizer.zero_grad()
sudo_outputs = val_model(X)
_, sudo_y = torch.max(sudo_outputs, 1)
for i in range(len(frame_nums)):
if sudo_outputs[i][sudo_y[i].item()] > thresh:
val_model.train()
optimizer.zero_grad()
with torch.set_grad_enabled(True):
X_ = torch.unsqueeze(X[i].cuda(),0)
y_ = torch.tensor([sudo_y[i].item()]).cuda()
outputs = val_model(X_)
_, preds = torch.max(outputs, 1)
loss = CB_loss(y_.cpu(), outputs.cpu(), samples_per_cls, nb_classes,loss_type, beta, gamma)
#loss = criterion(outputs, y_)
loss.backward()
optimizer.step()
#######Evaluation
for batch_idx, (X, y,vid_names,frame_nums) in enumerate(test_loader):
val_model.eval()
optimizer.zero_grad()
outputs = val_model(X)
_, label = torch.max(outputs, 1)
for i in range(len(frame_nums)):
lab = label[i].item()
test_json[category]['test_split']['videos'][vid_names[i]]['frames']['{:05d}.jpg'.format(frame_nums[i].item())] = lab
with open(args.SAVE_ROOT+'/'+Mtype+'_Activity_challenge_self_test_combine_predictions_st.json', 'w') as outfile:
json.dump(test_json, outfile)
with open(args.SAVE_ROOT+'/'+Mtype+'_Activity_challenge_self_val_combine_predictions_st.json', 'w') as outfile:
json.dump(val_json, outfile)
print(confusion_matrix)
return model
img_x, img_y = 600, 600
transform = transforms.Compose([transforms.Resize([img_x, img_y]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_params = {'batch_size': args.BATCH_SIZE, 'shuffle': True, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
train_set = DATASET(args, 'train_split',transform=transform)
train_loader = data.DataLoader(train_set, **train_params)
train_len = train_set.dataLen
numofClasses = train_set.numofClasses
classesList = train_set.allLabels
epochs = args.MAX_EPOCHS
val_epochs = args.VAL_EPOCHS
device = torch.device(args.device)
learning_rate = args.learning_rate
# model_ft = models.resnet152(pretrained=True)
# num_ftrs = model_ft.fc.in_features
# # Here the size of each output sample is set to 2.
# # Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)).
# model_ft.fc = nn.Linear(num_ftrs, numofClasses)
model = EfficientNet.from_pretrained('efficientnet-b5', num_classes=numofClasses)
model = model.to(device)
print(model)
samples_per_cls = train_set.nb_samples
nb_samples = train_set.nb_samples
print(nb_samples)
weights = 1. / nb_samples
print(weights)
class_weights = torch.FloatTensor(weights).cuda()
criterion = nn.CrossEntropyLoss(weight=class_weights)
# Observe that all parameters are being optimized
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
model = nn.DataParallel(model)
if not os.path.exists(args.SAVE_ROOT):
os.makedirs(args.SAVE_ROOT)
# start training
# train, validation/self training and testing model
if args.MODE == 'all' or args.MODE == 'train':
model,optimizer,scheduler = train(model, device, train_loader, criterion,optimizer,scheduler,train_len,numofClasses,samples_per_cls,epochs)
torch.save({'model_state_dict':model.state_dict()}, args.SAVE_ROOT+'/'+Mtype+'_trained_model.pth')
if args.MODE == 'all' or args.MODE == 'evaluate_val':
val_params = {'batch_size': args.VAL_BATCH_SIZE, 'shuffle': False, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
val_set = DATASET(args,'validation_split',transform=transform)
val_loader = data.DataLoader(val_set, **val_params)
checkpoint = torch.load(args.SAVE_ROOT+'/'+Mtype+'_trained_model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
model =evaluate_val(model,device, criterion,optimizer,scheduler,val_loader,val_epochs)
if args.MODE == 'all' or args.MODE == 'evaluate_test':
test_params = {'batch_size': args.TEST_BATCH_SIZE, 'shuffle': False, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
test_set = DATASET(args,'test_split',transform=transform)
test_loader = data.DataLoader(test_set, **test_params)
checkpoint = torch.load(args.SAVE_ROOT+'/'+Mtype+'_trained_model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
model =evaluate_test(model,device, criterion,optimizer,scheduler,test_loader,val_epochs)
if args.MODE == 'all' or args.MODE == 'self_val':
val_params = {'batch_size': args.VAL_BATCH_SIZE, 'shuffle': False, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
checkpoint = torch.load(args.SAVE_ROOT+'/'+Mtype+'_trained_model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
model = self_val(model,device, criterion,optimizer,scheduler,val_params,transform,numofClasses,samples_per_cls,val_epochs)
if args.MODE == 'all' or args.MODE == 'self_test':
test_params = {'batch_size': args.TEST_BATCH_SIZE, 'shuffle': False, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
checkpoint = torch.load(args.SAVE_ROOT+'/'+Mtype+'_trained_model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
model =self_test(model,device, criterion,optimizer,scheduler,test_params,transform,numofClasses,samples_per_cls,val_epochs)
if args.MODE == 'all' or args.MODE == 'self_val_test_combine':
val_params = {'batch_size': args.VAL_BATCH_SIZE, 'shuffle': False, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
test_params = {'batch_size': args.TEST_BATCH_SIZE, 'shuffle': False, 'num_workers': args.NUM_WORKERS, 'drop_last': True}
checkpoint = torch.load(args.SAVE_ROOT+'/'+Mtype+'_trained_model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
model =self_val_test_combine(model,device, criterion,optimizer,scheduler,val_params,test_params,transform,numofClasses,samples_per_cls,val_epochs)