-
Notifications
You must be signed in to change notification settings - Fork 46
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
BinaryClassifierPrecisionEfficacy
metric (#714)
- Loading branch information
Showing
16 changed files
with
1,378 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
"""Data Augmentation Metric for single table datasets.""" | ||
|
||
from sdmetrics.single_table.data_augmentation.binary_classifier_precision_efficacy import ( | ||
BinaryClassifierPrecisionEfficacy, | ||
) | ||
|
||
__all__ = ['BinaryClassifierPrecisionEfficacy'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,288 @@ | ||
"""Base class for Efficacy metrics for single table datasets.""" | ||
|
||
from copy import deepcopy | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from sklearn.metrics import confusion_matrix, precision_recall_curve, precision_score, recall_score | ||
from xgboost import XGBClassifier | ||
|
||
from sdmetrics.goal import Goal | ||
from sdmetrics.single_table.base import SingleTableMetric | ||
from sdmetrics.single_table.data_augmentation.utils import _validate_inputs | ||
|
||
METRIC_NAME_TO_METHOD = {'recall': recall_score, 'precision': precision_score} | ||
|
||
|
||
class ClassifierTrainer: | ||
"""Class to train a classifier model.""" | ||
|
||
def __init__( | ||
self, | ||
prediction_column_name, | ||
minority_class_label, | ||
classifier, | ||
fixed_value, | ||
metric_name, | ||
): | ||
self.prediction_column_name = prediction_column_name | ||
self.minority_class_label = minority_class_label | ||
self.fixed_value = fixed_value | ||
self.metric_name = metric_name | ||
self._classifier_name = classifier | ||
self._classifier = XGBClassifier(enable_categorical=True) | ||
self._metric_to_fix = 'recall' if metric_name == 'precision' else 'precision' | ||
self._metric_method = METRIC_NAME_TO_METHOD[self._metric_to_fix] | ||
|
||
def train_model(self, train_data): | ||
"""Train the classifier model.""" | ||
train_target = train_data.pop(self.prediction_column_name) | ||
self._classifier.fit(train_data, train_target) | ||
self._best_threshold = self.get_best_threshold(train_data, train_target) | ||
probabilities = self._classifier.predict_proba(train_data)[:, 1] | ||
predictions = (probabilities >= self._best_threshold).astype(int) | ||
|
||
return self._metric_method(train_target, predictions) | ||
|
||
def get_best_threshold(self, train_data, train_target): | ||
"""Find the best threshold for the classifier model.""" | ||
target_probabilities = self._classifier.predict_proba(train_data)[:, 1] | ||
precision, recall, thresholds = precision_recall_curve(train_target, target_probabilities) | ||
metric_map = {'precision': precision, 'recall': recall} | ||
metric = metric_map[self._metric_to_fix] | ||
valid_idx = np.where(metric >= self.fixed_value)[0] | ||
if valid_idx.size: | ||
best_idx = valid_idx[np.argmin(metric[valid_idx] - self.fixed_value)] | ||
return thresholds[best_idx] if best_idx < len(thresholds) else 1.0 | ||
|
||
return 1.0 | ||
|
||
def compute_validation_scores(self, real_validation_data): | ||
"""Compute the validation scores.""" | ||
real_validation_target = real_validation_data.pop(self.prediction_column_name) | ||
predictions = self._classifier.predict_proba(real_validation_data)[:, 1] | ||
predictions = (predictions >= self._best_threshold).astype(int) | ||
recall = recall_score(real_validation_target, predictions) | ||
precision = precision_score(real_validation_target, predictions) | ||
conf_matrix = confusion_matrix(real_validation_target, predictions) | ||
prediction_counts_validation = { | ||
'true_positive': int(conf_matrix[1, 1]), | ||
'false_positive': int(conf_matrix[0, 1]), | ||
'true_negative': int(conf_matrix[0, 0]), | ||
'false_negative': int(conf_matrix[1, 0]), | ||
} | ||
|
||
return recall, precision, prediction_counts_validation | ||
|
||
def get_scores(self, training_table, validation_table): | ||
"""Get the scores of the metric.""" | ||
training_table = deepcopy(training_table) | ||
validation_table = deepcopy(validation_table) | ||
training_score = self.train_model(training_table) | ||
recall, precision, prediction_counts_validation = self.compute_validation_scores( | ||
validation_table | ||
) | ||
return { | ||
f'{self._metric_to_fix}_score_training': training_score, | ||
'recall_score_validation': recall, | ||
'precision_score_validation': precision, | ||
'prediction_counts_validation': prediction_counts_validation, | ||
} | ||
|
||
|
||
class BaseDataAugmentationMetric(SingleTableMetric): | ||
"""Base class for Data Augmentation metrics for single table datasets.""" | ||
|
||
name = None | ||
metric_name = None | ||
goal = Goal.MAXIMIZE | ||
min_value = 0.0 | ||
max_value = 1.0 | ||
|
||
@classmethod | ||
def _fit(cls, data, metadata, prediction_column_name): | ||
"""Fit preprocessing parameters.""" | ||
discrete_columns = [] | ||
datetime_columns = [] | ||
for column, column_meta in metadata['columns'].items(): | ||
if (column_meta['sdtype'] in ['categorical', 'boolean']) and ( | ||
column != prediction_column_name | ||
): | ||
discrete_columns.append(column) | ||
elif column_meta['sdtype'] == 'datetime': | ||
datetime_columns.append(column) | ||
|
||
return discrete_columns, datetime_columns | ||
|
||
@classmethod | ||
def _transform( | ||
cls, | ||
tables, | ||
discrete_columns, | ||
datetime_columns, | ||
prediction_column_name, | ||
minority_class_label, | ||
): | ||
"""Transform by preprocessing the tables. | ||
Args: | ||
tables (dict[str, pandas.DataFrame]): | ||
Dict containing `real_training_data`, `synthetic_data` and `real_validation_data`. | ||
""" | ||
tables_result = {} | ||
for table_name, table in tables.items(): | ||
table = table.copy() | ||
table[discrete_columns] = table[discrete_columns].astype('category') | ||
table[datetime_columns] = table[datetime_columns].apply(pd.to_numeric) | ||
table[prediction_column_name] = ( | ||
table[prediction_column_name] == minority_class_label | ||
).astype(int) | ||
tables_result[table_name] = table | ||
|
||
return tables_result | ||
|
||
@classmethod | ||
def _fit_transform( | ||
cls, | ||
real_training_data, | ||
synthetic_data, | ||
real_validation_data, | ||
metadata, | ||
prediction_column_name, | ||
minority_class_label, | ||
): | ||
"""Fit and transform the metric.""" | ||
discrete_columns, datetime_columns = cls._fit( | ||
real_training_data, metadata, prediction_column_name | ||
) | ||
tables = { | ||
'real_training_data': real_training_data, | ||
'synthetic_data': synthetic_data, | ||
'real_validation_data': real_validation_data, | ||
} | ||
|
||
return cls._transform( | ||
tables, | ||
discrete_columns, | ||
datetime_columns, | ||
prediction_column_name, | ||
minority_class_label, | ||
) | ||
|
||
@classmethod | ||
def compute_breakdown( | ||
cls, | ||
real_training_data, | ||
synthetic_data, | ||
real_validation_data, | ||
metadata, | ||
prediction_column_name, | ||
minority_class_label, | ||
classifier, | ||
fixed_recall_value, | ||
): | ||
"""Compute the score breakdown of the metric.""" | ||
_validate_inputs( | ||
real_training_data, | ||
synthetic_data, | ||
real_validation_data, | ||
metadata, | ||
prediction_column_name, | ||
minority_class_label, | ||
classifier, | ||
fixed_recall_value, | ||
) | ||
preprocessed_tables = cls._fit_transform( | ||
real_training_data, | ||
synthetic_data, | ||
real_validation_data, | ||
metadata, | ||
prediction_column_name, | ||
minority_class_label, | ||
) | ||
trainer = ClassifierTrainer( | ||
prediction_column_name, | ||
minority_class_label, | ||
classifier, | ||
fixed_recall_value, | ||
cls.metric_name, | ||
) | ||
metric_to_fix = 'recall' if cls.metric_name == 'precision' else 'precision' | ||
result = { | ||
'real_data_baseline': trainer.get_scores( | ||
preprocessed_tables['real_training_data'], | ||
preprocessed_tables['real_validation_data'], | ||
), | ||
'augmented_data': trainer.get_scores( | ||
pd.concat([ | ||
preprocessed_tables['real_training_data'], | ||
preprocessed_tables['synthetic_data'], | ||
]).reset_index(drop=True), | ||
preprocessed_tables['real_validation_data'], | ||
), | ||
'parameters': { | ||
'prediction_column_name': trainer.prediction_column_name, | ||
'minority_class_label': trainer.minority_class_label, | ||
'classifier': trainer._classifier_name, | ||
f'fixed_{metric_to_fix}_value': trainer.fixed_value, | ||
}, | ||
} | ||
result['score'] = max( | ||
0, | ||
( | ||
result['augmented_data'][f'{cls.metric_name}_score_validation'] | ||
- result['real_data_baseline'][f'{cls.metric_name}_score_validation'] | ||
), | ||
) | ||
return result | ||
|
||
@classmethod | ||
def compute( | ||
cls, | ||
real_training_data, | ||
synthetic_data, | ||
real_validation_data, | ||
metadata, | ||
prediction_column_name, | ||
minority_class_label, | ||
classifier=None, | ||
fixed_recall_value=0.9, | ||
): | ||
"""Compute the score of the metric. | ||
Args: | ||
real_training_data (pandas.DataFrame): | ||
The real training data. | ||
synthetic_data (pandas.DataFrame): | ||
The synthetic data. | ||
real_validation_data (pandas.DataFrame): | ||
The real validation data. | ||
metadata (dict): | ||
The metadata dictionary describing the table of data. | ||
prediction_column_name (str): | ||
The name of the column to be predicted. | ||
minority_class_label (int): | ||
The minority class label. | ||
classifier (str): | ||
The ML algorithm to use when building a Binary Classfication. | ||
Supported options are ``XGBoost``. Defaults to ``XGBoost``. | ||
fixed_recall_value (float): | ||
A float in the range (0, 1.0) describing the value to fix for the recall when | ||
building the Binary Classification model. Defaults to ``0.9``. | ||
Returns: | ||
float: | ||
The score of the metric. | ||
""" | ||
breakdown = cls.compute_breakdown( | ||
real_training_data, | ||
synthetic_data, | ||
real_validation_data, | ||
metadata, | ||
prediction_column_name, | ||
minority_class_label, | ||
classifier, | ||
fixed_recall_value, | ||
) | ||
|
||
return breakdown['score'] |
10 changes: 10 additions & 0 deletions
10
sdmetrics/single_table/data_augmentation/binary_classifier_precision_efficacy.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
"""Binary classifier precision efficacy metric.""" | ||
|
||
from sdmetrics.single_table.data_augmentation.base import BaseDataAugmentationMetric | ||
|
||
|
||
class BinaryClassifierPrecisionEfficacy(BaseDataAugmentationMetric): | ||
"""Binary classifier precision efficacy metric.""" | ||
|
||
name = 'Binary Classifier Precision Efficacy' | ||
metric_name = 'precision' |
Oops, something went wrong.