A quantum-inspired computing system that combines multi-state bits with pattern-based operations for advanced computation and data representation.
-
Multi-State Representation
- Classical states (0, 1)
- Quantum-inspired states (Ψ, +, -)
- Pattern-based operations
- State transitions
-
Grid-Based Storage
- Dynamic grid sizing
- Quasi-periodic patterns
- Neighbor-aware operations
- Sparse representation
-
Quantum-Inspired Operations
- Superposition
- State collapse
- Pattern transformation
- Grid evolution
# Clone the repository
git clone https://github.com/yourusername/tqtbs.git
cd tqtbs
# Install dependencies
pip install -r requirements.txt
from tqtbs.core import TetryonicBit
from tqtbs.storage import QuasiTessellationGrid
# Create a TetryonicBit
bit = TetryonicBit("0")
bit.quantum_superposition() # Enter superposition
bit.collapse_superposition() # Collapse to classical state
# Create a grid
grid = QuasiTessellationGrid(3)
grid.initialize_grid()
grid.display_grid()
The system includes comprehensive benchmarks comparing TQTBS with IEEE-754:
# Run focused benchmarks
python experiments/focused_benchmark.py
# Run general benchmarks
python experiments/benchmark_metrics.py
-
Quantum Operations
- Superposition: 0.2-0.4 μs
- State Collapse: 0.4-0.7 μs
- Pattern Transform: 8-37 μs
-
Pattern Recognition
- Small Patterns (3×3): ~15 μs
- Medium Patterns (5×5): ~27 μs
- Large Patterns (7×7): ~45 μs
# Create and manipulate TetryonicBits
bit = TetryonicBit("0")
bit.quantum_superposition()
print(f"Current state: {bit.state}") # Ψ
bit.collapse_superposition()
print(f"Collapsed state: {bit.state}") # 0 or 1
# Create a pattern grid
grid = QuasiTessellationGrid(3)
pattern = [
[1, 1, 1],
[0, 1, 0],
[1, 1, 1]
]
# Initialize grid with pattern
for i in range(3):
for j in range(3):
if pattern[i][j]:
grid.update_cell(i, j, "1")
else:
grid.update_cell(i, j, "0")
# Display the grid
grid.display_grid()
# Create a quantum-inspired pattern
grid = QuasiTessellationGrid(5)
for i in range(5):
for j in range(5):
bit = TetryonicBit("1")
bit.quantum_superposition()
grid.update_cell(i, j, bit.state)
# Display quantum pattern
grid.display_grid()
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- IEEE-754 floating-point standard
- Quantum computing principles
- Pattern recognition algorithms
- Grid-based computation methods
- Project Link: https://github.com/yourusername/tqtbs
- Documentation: https://tqtbs.readthedocs.io