Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
shyu216 committed Aug 22, 2024
1 parent ac16712 commit 4d96dc2
Showing 1 changed file with 94 additions and 8 deletions.
102 changes: 94 additions & 8 deletions src/master/COMP90084.md
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ tag:
- 基于量子力学的计算机学说
- 量子化学,量子深度学习
- 后量子密码学
- Physical Qbits:
- Physical Qubits:
- Particles with polarization(photon) 光子
- Trapped ions 离子阱
- Cold Atoms 冷原子
Expand Down Expand Up @@ -194,7 +194,19 @@ tag:
- being simultaneously in all states
- detect the state with probability $x_i = \frac{|c_i|^2}{\sum_{i=0}^{n} |c_i|^2}$
- when observed, it will collapse to one of the basic states
- 设$\Omega$是一个可观测量,$|\psi\rangle$是一个量子态。如果测量的结果是特征值$\lambda$,则测量后的量子态将始终是对应于$\lambda$的特征向量。

- 時間反演對稱
- $UU^\dagger = I$
- $U^\dagger U = I$
- $|\psi\rangle = U|\phi\rangle$
- $\langle\psi| = \langle\phi|U^\dagger$
- $\langle\phi|\psi\rangle = \langle\phi|U^\dagger U|\psi\rangle$
- 模不变
- 量子态的模的表示: $\langle\psi|\psi\rangle$
- $\langle\psi|\psi\rangle = \langle\phi|U^\dagger U|\phi\rangle = \langle\phi|\phi\rangle$
- $|\psi\rangle$ 和 $|\phi\rangle$ 的模相等

- 设$\Omega$是一个可观测量,$|\psi\rangle$是一个量子态。如果测量的结果是特征值$\lambda$,则测量后的量子态将始终是对应于$\lambda$的特征向量

- superposition 叠加: $|\psi\rangle \longmapsto \alpha|0\rangle + \beta|1\rangle$
- $\alpha$ and $\beta$ are complex amplitudes 复振幅
Expand All @@ -207,10 +219,15 @@ tag:
- determine how likely a start state will change to an end state (after measurement)
- entanglement 纠缠
- connect two qubits using a gate
- Bell state: $|\Phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$
- Bell state: $|\Phi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$
- Bell state: $|\Psi^+\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$
- Bell state: $|\Psi^-\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$
- Bell state
- 量子比特间的强纠缠关系
- $|\Phi^+\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$
- 两个量子比特要么都在状态 $|0\rangle$,要么都在状态 $|1\rangle$,且这两种情况的概率相等
- 最大纠缠态,两个量子比特的状态之间没有相位差,量子态无法分解成两个量子态的直积
- $|\Phi^-\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$
- 两个量子比特的状态之间存在一个相位差
- $|\Psi^+\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$
- $|\Psi^-\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$

## 3. Quantum Architecture, Classical, Reversible and Quantum Gates

Expand All @@ -222,15 +239,40 @@ tag:
- AND: 1 if both are 1
- $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- OR: 1 if either is 1
- $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$
- NAND: 0 if both are 1
- NOT $\star$ AND
- $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$
- XOR: 1 if either is 1, but not both

- bloch sphere 用于表示量子比特状态的几何图形
- NOT $\star$ OR
- $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$
- all Quantum gates are reversible
- Toffoli gate: 3 qubits, 2 control and 1 target
- if both control qubits are 1, then the target qubit is flipped
- $\begin{array}{} \ 000 \ 001 \ 010 \ 011 \ 100 \ 101 \ 110 \ 111 \\ \begin{array}{c} 000 \\ 001 \\ 010 \\ 011 \\ 100 \\ 101 \\ 110 \\ 111 \end{array} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \end{array}$
- $$
- Fredkin gate: 3 qubits, 1 control and 2 target
- if the control qubit is 1, then the target qubits are swapped
- $\begin{array}{} \ 000 \ 001 \ 010 \ 011 \ 100 \ 101 \ 110 \ 111 \\ \begin{array}{c} 000 \\ 001 \\ 010 \\ 011 \\ 100 \\ 101 \\ 110 \\ 111 \end{array} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{array}$
- bloch sphere 布洛赫球: 用于表示量子比特状态的几何图形
- X, Y axis: $0 \leq \theta \leq 2\pi$
- Z axis: $0 \leq \phi \leq \frac{\pi}{2}$
- Pauli X: 沿 X 轴旋转 180 度
- Pauli Y: 沿 Y 轴旋转 180 度
- Pauli Z: 沿 Z 轴旋转 180 度
- phase shift gate:
- $R(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{\theta} \end{bmatrix}$
- Deutch gate:
- if both control qubits are 1, then apply a phase shift on target
- Jyā, koti-jyā and utkrama-jyā 印度的三角函数
- no-cloning theorem: cannot copy an arbitrary unknown quantum state
- 证明:假设可以复制,那么可以通过两个相同的量子比特,得到一个新的固定的量子比特。但这是不可能的
- transportion
- take $|\psi\rangle$ in first system and nothing in second system, then teleport $|x\rangle$ to second system
- $T(|\psi\rangle \bigotimes |0\rangle) = |\psi\rangle \bigotimes |0\rangle$
- CNOT
- control qubit, target qubit
Expand All @@ -244,6 +286,8 @@ tag:
- $|\psi'\rangle = CNOT \cdot |\psi\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \ \beta \ \gamma \ \delta \end{bmatrix} = \begin{bmatrix} \alpha \ \beta \ \delta \ \gamma \end{bmatrix}$
- $|\psi'\rangle = \alpha|00\rangle + \beta|01\rangle + \delta|10\rangle + \gamma|11\rangle$
- Hadamard
- 创建和破坏量子比特的叠加态
- $H = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
- Pauli X,Y,Z
- $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- X is also called NOT gate
Expand All @@ -265,15 +309,57 @@ tag:
- eigenvectors:
- up $|\uparrow\rangle = \psi_{z+} = |0\rangle$
- down $|\downarrow\rangle = \psi_{z-} = |1\rangle$
- S: 添加一个 $\frac{\pi}{2}$ 的相位
- $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
- T: 添加一个 $\frac{\pi}{4}$ 的相位
- $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix}$
## 4. Simple Quantum Algorithms
- n Hadamand gates: $H^{\bigotimes n}$
- $|\psi\rangle = \frac{1}{\sqrt{2^n}}\sum_{i=0}^{2^n-1}|i\rangle$
- reversible function execution:
- control: $|x\rangle$ --> $U_f$ --> $|x\rangle$
- target: $|0\rangle$ --> $U_f$ --> $|f(x)\rangle$
- quantum parallelism: exponential numbers were inputted simultaneously, result was given in next clock, by quantum function
- given a quantum representation, only one result can be given, not all solutions
- the point is: what algorithm can take advantage of quantum mechanism?
## 5. QFT and Quantum Phase Estimation
- quantum mechanics can solve combinatorial optimization problems
- finding optimal objects that satisfy a certain condition
- Knapsack problem
- given a set of items, each with a weight and a value
- determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible
- n items
- $x_i$ is 1 if the item is included, 0 otherwise
- $v_i$ is the value of the item
- $W$ is the maximum weight
- maximize $\sum_{i=1}^{n} v_i x_i$
- subject to $\sum_{i=1}^{n} w_i x_i \leq W$
- max-cut
- edges have weights
- find a cut that maximizes the sum of the weights of the edges that are cut
- minimum vetec cover
- find the minimum number of vertices that cover all edges
- simulated annealing 模拟退火
- a probabilistic technique for approximating the global optimum of a given function
- local search (Monte Carlo)
- find solution from neighbors
- Metropolis algorithm
- reproduce annealing process
- $E_i$ is the energy of state $i$
- if $E_i - E_j > 0$, change current state to state $j$
- if $E_i - E_j < 0$, change current state to state $j$ with probability $e^{\frac{E_i - E_j}{K_b T}}$
- quadratic unconstrained binary optimization (QUBO)
- $min \ or \ max \sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij} x_i x_j$
- subject to $x_i \in \{0, 1\}$
- $Y = X^T Q X$
- Q is symmetric or upper triangular
- NP problem
## 6. Quantum Key Distribution .
## 7. Quantum Principal Component Analysis, QAOA
## 8. Variational Quantum Circuits for Machine Learning
Expand Down

0 comments on commit 4d96dc2

Please sign in to comment.