-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain_DQN.py
149 lines (126 loc) · 4.98 KB
/
Train_DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from __future__ import absolute_import
from builtins import * # NOQA
from future import standard_library
standard_library.install_aliases() # NOQA
from args import args
import os
import sys
from chainer import optimizers
import gym
from gym import spaces
from NSMGame import Game
import numpy as np
import chainer
import chainerrl
from chainerrl.agents.dqn import DQN
from chainerrl import experiments
from chainerrl import explorers
from chainerrl import links
from chainerrl import misc
from chainerrl import q_functions
from chainerrl import replay_buffer
class DQN2NSM(object):
def __init__(self):
print()
def env_make(self, test=True):
"""
environment
:param test:
:return:
"""
# env = Game(mode="LINN", total_time=20, wave_num=10, vm_num=10, max_iter=20, rou=2, mu=15, k=3, f=3, weight=1)
env = Game(mode="LINN",
total_time=300,
wave_num=10,
vm_num=10,
max_iter=40,
rou=2,
mu=40,
k=3,
w=3,
n=2,
weight=1)
# env_seed = 2 ** 32 - 1 - args.seed if test else args.seed
# env.seed(env_seed)
# env = chainerrl.wrappers.CastObservationToFloat32(env)
# if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
# env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
return env
def main(self):
import logging
logging.basicConfig(level=logging.INFO)
# Set a random seed used in ChainerRL
misc.set_random_seed(args.seed, gpus=(args.gpu,))
args.outdir = experiments.prepare_output_dir(args, args.outdir, argv=sys.argv)
print('Output files are saved in {}'.format(args.outdir))
env = self.env_make(test=False)
timestep_limit = env.total_time
obs_size = env.observation.size
action_space = env.action_space
# Q function
n_actions = action_space.n
q_func = q_functions.FCStateQFunctionWithDiscreteAction(
obs_size, n_actions,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers)
# Use epsilon-greedy for exploration
explorer = explorers.LinearDecayEpsilonGreedy(
args.start_epsilon, args.end_epsilon, args.final_exploration_steps,
action_space.sample)
if args.noisy_net_sigma is not None:
links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
# Turn off explorer
explorer = explorers.Greedy()
# Draw the computational graph and save it in the output directory.
# chainerrl.misc.draw_computational_graph([q_func(np.zeros_like(obs_space.low, dtype=np.float32)[None])],
# os.path.join(args.outdir, 'model'))
opt = optimizers.Adam()
opt.setup(q_func)
rbuf = self.buffer()
agent = DQN(q_func, opt, rbuf, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
minibatch_size=args.minibatch_size,
target_update_method=args.target_update_method,
soft_update_tau=args.soft_update_tau)
if args.load:
agent.load(args.load)
eval_env = self.env_make(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit
)
print('n_runs: {} mean: {} median: {} stdev: {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev']
))
else:
experiments.train_agent_with_evaluation(
agent=agent, env=env, steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval,
outdir=args.outdir, eval_env=eval_env,
train_max_episode_len=timestep_limit
)
pass
def buffer(self):
rbuf_capacity = 5 * 10 ** 5
if args.minibatch_size is None:
args.minibatch_size = 32
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) \
// args.update_interval
return replay_buffer.PrioritizedReplayBuffer(rbuf_capacity, betasteps=betasteps)
else:
return replay_buffer.ReplayBuffer(rbuf_capacity)
if __name__ == "__main__":
dqn = DQN2NSM()
dqn.main()