Skip to content

Commit

Permalink
Added HL CRM config and new post.
Browse files Browse the repository at this point in the history
  • Loading branch information
economon committed Mar 6, 2018
1 parent 89d7fd4 commit e30701d
Show file tree
Hide file tree
Showing 2 changed files with 293 additions and 0 deletions.
7 changes: 7 additions & 0 deletions _posts/2018-02-14-v6.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
---
layout: post
title: "Official Release of SU2 v6.0"
author: SU2 Team
---

View the [official announcement](../../../../../emails/su2_email_v6.html).
286 changes: 286 additions & 0 deletions documents/turb_hl_crm.cfg
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Turbulent flow past the High-Lift CRM (AoA = 8 deg) %
% Author: Thomas D. Economon %
% Date: 2018.02.14 %
% File Version 6.0.0 "Falcon" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY,
% POISSON_EQUATION)
PHYSICAL_PROBLEM= NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE)
REGIME_TYPE= COMPRESSIBLE
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
% Newtons = kg m/s^2, Pascals = N/m^2,
% Density = kg/m^3, Speed = m/s,
% Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2,
% psf = lbf/ft^2, Density = slug/ft^3,
% Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= US

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.2
%
% Angle of attack (degrees, only for compressible flows)
AoA= 8.0
%
% Free-stream temperature (Rankine for US)
FREESTREAM_TEMPERATURE= 518.67
%
% Reynolds number (non-dimensional, based on the free-stream values and ref MAC)
REYNOLDS_NUMBER= 3.26E6
%
% Reynolds length (ref MAC of 275.8 inch)
REYNOLDS_LENGTH= 275.80

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 1325.90
REF_ORIGIN_MOMENT_Y = 0.0
REF_ORIGIN_MOMENT_Z = 177.95
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH= 275.80
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 297360.0
%
% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= (TRI_bdy2, 0.0, TRI_bdy5, 0.0, TRI_bdy7, 0.0, TRI_bdy9, 0.0, QUAD_bdy2, 0.0, QUAD_bdy5, 0.0, QUAD_bdy7, 0.0, QUAD_bdy9, 0.0, TRI_bdy3, 0.0, QUAD_bdy3, 0.0 )
%
% Farfield boundary marker(s) (NONE = no marker)
MARKER_FAR= ( TRI_bdy1, TRI_bdy4, TRI_bdy6 )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( TRI_bdy8, QUAD_bdy8 )
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= (TRI_bdy2, TRI_bdy5, TRI_bdy7, TRI_bdy9, QUAD_bdy2, QUAD_bdy5, QUAD_bdy7, QUAD_bdy9, TRI_bdy3, QUAD_bdy3 )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= (TRI_bdy2, TRI_bdy5, TRI_bdy7, TRI_bdy9, QUAD_bdy2, QUAD_bdy5, QUAD_bdy7, QUAD_bdy9, TRI_bdy3, QUAD_bdy3)

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 15.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= YES
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 15.0, 100.0 )
%
% Number of total iterations
EXT_ITER= 30000

% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.05
%
% Coefficient for the sharp edges limiter
ADJ_SHARP_LIMITER_COEFF= 3.0
%
% Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP_EDGES= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP= NO

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= ILU
%
% Linaer solver ILU preconditioner fill-in level (0 by default)
LINEAR_SOLVER_ILU_FILL_IN= 0
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-10
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= YES
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_FLOW= 0.9

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_TURB= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Relaxation coefficient
RELAXATION_FACTOR_TURB= 0.9

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 6
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS)
CAUCHY_FUNC_FLOW= DRAG
%
% Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH)
CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file (Medium grid by default, same cfg file will work for Coarse)
MESH_FILENAME= Woeber_Pointwise_HLCRM_FullGap_HexPrismPyrTets_Medium.cgns
%MESH_FILENAME= Woeber_Pointwise_HLCRM_FullGap_HexPrismPyrTets_Coarse.cgns
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= CGNS
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW,
% FIELDVIEW, FIELDVIEW_BINARY)
OUTPUT_FORMAT= PARAVIEW
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
WRT_SOL_FREQ= 500
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Output residual values in the solution files
WRT_RESIDUALS= NO
%
% Output limiters values in the solution files
WRT_LIMITERS= NO
%
% Output the sharp edges detector
WRT_SHARPEDGES= NO

0 comments on commit e30701d

Please sign in to comment.