Skip to content

Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training

Notifications You must be signed in to change notification settings

sunwei925/StairIQA

Repository files navigation

StairIQA

This is a repository for the models proposed in the paper "Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training" JSTSP version Arxiv version.

Usage

Download csv files

The train and test split files can be download from Google drive or Baidu Yun (提取码:y4be)

Train

Train on a single database (e.g. BID)

CUDA_VISIBLE_DEVICES=0 python -u train_single_database.py \
--num_epochs 100 \
--batch_size 30 \
--resize 384 \
--crop_size 320 \
--lr 0.00005 \
--decay_ratio 0.9 \
--decay_interval 10 \
--snapshot /data/sunwei_data/ModelFolder/StairIQA/ \
--database_dir /data/sunwei_data/BID/ImageDatabase/ImageDatabase/ \
--model stairIQA_resnet \
--multi_gpu False \
--print_samples 20 \
--database BID \
--test_method five \
>> logfiles/train_BID_stairIQA_resnet.log

Train on multiple databases

CUDA_VISIBLE_DEVICES=0 python -u train_imdt.py \
--num_epochs 3 \
--batch_size 30 \
--lr 0.00001 \
--decay_ratio 0.9 \
--decay_interval 1 \
--snapshot /data/sunwei_data/ModelFolder/StairIQA/ \
--model stairIQA_resnet \
--multi_gpu False \
--print_samples 100 \
--test_method five \
--results_path results \
--exp_id 0 \
>> logfiles/train_stairIQA_resnet_imdt_exp_id_0.log

The information of databases used in the train_imdt.py file can be edited in the config.yaml file.

Test

Download the trained model:

Koniq10k: Google drive

SPAQ: Google drive

BID: Google drive

LIVE_challenge: Google drive

FLIVE: Google drive

FLIVE_patch: Google drive

Test a image on the model where the regressor is trained on one dataset (i.e. Koniq10k):

CUDA_VISIBLE_DEVICES=0 python -u test_staircase.py \
--test_image_name image_name \
--model_path model_file \
--trained_database Koniq10k \
--test_method five \
--output_name output.txt

Test a image on the ensemble model:

CUDA_VISIBLE_DEVICES=1 python -u test_staircase_ensemble.py \
--test_image_name image_name \
--test_method five \
--output_name output.txt

Citation

If you find this code is useful for your research, please cite:

@article{sun2023blind,
  title={Blind quality assessment for in-the-wild images via hierarchical feature fusion and iterative mixed database training},
  author={Sun, Wei and Min, Xiongkuo and Tu, Danyang and Ma, Siwei and Zhai, Guangtao},
  journal={IEEE Journal of Selected Topics in Signal Processing},
  year={2023},
  publisher={IEEE}
}

About

Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published