This is a repository for the models proposed in the paper "Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training" JSTSP version Arxiv version.
The train and test split files can be download from Google drive or Baidu Yun (提取码:y4be)
Train on a single database (e.g. BID)
CUDA_VISIBLE_DEVICES=0 python -u train_single_database.py \
--num_epochs 100 \
--batch_size 30 \
--resize 384 \
--crop_size 320 \
--lr 0.00005 \
--decay_ratio 0.9 \
--decay_interval 10 \
--snapshot /data/sunwei_data/ModelFolder/StairIQA/ \
--database_dir /data/sunwei_data/BID/ImageDatabase/ImageDatabase/ \
--model stairIQA_resnet \
--multi_gpu False \
--print_samples 20 \
--database BID \
--test_method five \
>> logfiles/train_BID_stairIQA_resnet.log
Train on multiple databases
CUDA_VISIBLE_DEVICES=0 python -u train_imdt.py \
--num_epochs 3 \
--batch_size 30 \
--lr 0.00001 \
--decay_ratio 0.9 \
--decay_interval 1 \
--snapshot /data/sunwei_data/ModelFolder/StairIQA/ \
--model stairIQA_resnet \
--multi_gpu False \
--print_samples 100 \
--test_method five \
--results_path results \
--exp_id 0 \
>> logfiles/train_stairIQA_resnet_imdt_exp_id_0.log
The information of databases used in the train_imdt.py file can be edited in the config.yaml file.
Download the trained model:
Koniq10k: Google drive
SPAQ: Google drive
BID: Google drive
LIVE_challenge: Google drive
FLIVE: Google drive
FLIVE_patch: Google drive
Test a image on the model where the regressor is trained on one dataset (i.e. Koniq10k):
CUDA_VISIBLE_DEVICES=0 python -u test_staircase.py \
--test_image_name image_name \
--model_path model_file \
--trained_database Koniq10k \
--test_method five \
--output_name output.txt
Test a image on the ensemble model:
CUDA_VISIBLE_DEVICES=1 python -u test_staircase_ensemble.py \
--test_image_name image_name \
--test_method five \
--output_name output.txt
If you find this code is useful for your research, please cite:
@article{sun2023blind,
title={Blind quality assessment for in-the-wild images via hierarchical feature fusion and iterative mixed database training},
author={Sun, Wei and Min, Xiongkuo and Tu, Danyang and Ma, Siwei and Zhai, Guangtao},
journal={IEEE Journal of Selected Topics in Signal Processing},
year={2023},
publisher={IEEE}
}