-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3,777 changed files
with
6,909 additions
and
1 deletion.
The diff you're trying to view is too large. We only load the first 3000 changed files.
There are no files selected for viewing
5 changes: 5 additions & 0 deletions
5
data/2018/ijcai/"Chitty-Chitty-Chat Bot": Deep Learning for Conversational AI
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
Conversational AI is of growing importance since it enables easy interaction interface between humans and computers. Due to its promising potential and alluring commercial values to serve as virtual assistants and/or social chatbots, major AI, NLP, and Search & Mining conferences are explicitly calling-out for contributions from conversational studies. It is an active research area and of considerable interest. | ||
|
||
|
||
|
||
To build a conversational system with moderate intelligence is challenging, and requires abundant dialogue data and interdisciplinary techniques. Along with the Web 2.0, the massive data available greatly facilitate data-driven methods such as deep learning for human-computer conversations. In general, conversational systems can be categorized into 1) task-oriented systems which aim to help users accomplish goals in vertical domains, and 2) social chat bots which can converse seamlessly and appropriately with humans, playing the role of a chat companion. In this paper, we focus on the survey of non-task-oriented chit-chat bots. |
1 change: 1 addition & 0 deletions
1
...n-1 Correlated Embedding via Adaptive Exploration of the Structure and Semantic Subspaces
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Combinational network embedding, which learns the node representation by exploring both topological and non-topological information, becomes popular due to the fact that the two types of information are complementing each other. Most of the existing methods either consider the topological and non-topological information being aligned or possess predetermined preferences during the embedding process.Unfortunately, previous methods fail to either explicitly describe the correlations between topological and non-topological information or adaptively weight their impacts. To address the existing issues, three new assumptions are proposed to better describe the embedding space and its properties. With the proposed assumptions, nodes, communities and topics are mapped into one embedding space. A novel generative model is proposed to formulate the generation process of the network and content from the embeddings, with respect to the Bayesian framework. The proposed model automatically leans to the information which is more discriminative.The embedding result can be obtained by maximizing the posterior distribution by adopting the variational inference and reparameterization trick. Experimental results indicate that the proposed method gives superior performances compared to the state-of-the-art methods when a variety of real-world networks is analyzed. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Learning from synthetic faces, though perhaps appealing for high data efficiency, may not bring satisfactory performance due to the distribution discrepancy of the synthetic and real face images. To mitigate this gap, we propose a 3D-Aided Deep Pose-Invariant Face Recognition Model (3D-PIM), which automatically recovers realistic frontal faces from arbitrary poses through a 3D face model in a novel way. Specifically, 3D-PIM incorporates a simulator with the aid of a 3D Morphable Model (3D MM) to obtain shape and appearance prior for accelerating face normalization learning, requiring less training data. It further leverages a global-local Generative Adversarial Network (GAN) with multiple critical improvements as a refiner to enhance the realism of both global structures and local details of the face simulator’s output using unlabelled real data only, while preserving the identity information. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks clearly demonstrate superiority of the proposed model over state-of-the-arts. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/3D-PhysNet: Learning the Intuitive Physics of Non-Rigid Object Deformations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
The ability to interact and understand the environment is a fundamental prerequisite for a wide range of applications from robotics to augmented reality. In particular, predicting how deformable objects will react to applied forces in real time is a significant challenge. This is further confounded by the fact that shape information about encountered objects in the real world is often impaired by occlusions, noise and missing regions e.g. a robot manipulating an object will only be able to observe a partial view of the entire solid. In this work we present a framework, 3D-PhysNet, which is able to predict how a three-dimensional solid will deform under an applied force using intuitive physics modelling. In particular, we propose a new method to encode the physical properties of the material and the applied force, enabling generalisation over materials. The key is to combine deep variational autoencoders with adversarial training, conditioned on the applied force and the material properties.We further propose a cascaded architecture that takes a single 2.5D depth view of the object and predicts its deformation. Training data is provided by a physics simulator. The network is fast enough to be used in real-time applications from partial views. Experimental results show the viability and the generalisation properties of the proposed architecture. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A Bayesian Latent Variable Model of User Preferences with Item Context
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Personalized recommendation has proven to be very promising in modeling the preference of users over items. However, most existing work in this context focuses primarily on modeling user-item interactions, which tend to be very sparse. We propose to further leverage the item-item relationships that may reflect various aspects of items that guide users' choices. Intuitively, items that occur within the same "context" (e.g., browsed in the same session, purchased in the same basket) are likely related in some latent aspect. Therefore, accounting for the item's context would complement the sparse user-item interactions by extending a user's preference to other items of similar aspects. To realize this intuition, we develop Collaborative Context Poisson Factorization (C2PF), a new Bayesian latent variable model that seamlessly integrates contextual relationships among items into a personalized recommendation approach. We further derive a scalable variational inference algorithm to fit C2PF to preference data. Empirical results on real-world datasets show evident performance improvements over strong factorization models. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A Brand-level Ranking System with the Customized Attention-GRU Model
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
In e-commerce websites like Taobao, brand is playing a more important role in influencing users' decision of click/purchase, partly because users are now attaching more importance to the quality of products and brand is an indicator of quality. However, existing ranking systems are not specifically designed to satisfy this kind of demand. Some design tricks may partially alleviate this problem, but still cannot provide satisfactory results or may create additional interaction cost. In this paper, we design the first brand-level ranking system to address this problem. The key challenge of this system is how to sufficiently exploit users' rich behavior in e-commerce websites to rank the brands. In our solution, we firstly conduct the feature engineering specifically tailored for the personalized brand ranking problem and then rank the brands by an adapted Attention-GRU model containing three important modifications. Note that our proposed modifications can also apply to many other machine learning models on various tasks. We conduct a series of experiments to evaluate the effectiveness of our proposed ranking model and test the response to the brand-level ranking system from real users on a large-scale e-commerce platform, i.e. Taobao. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A COP Model for Graph-Constrained Coalition Formation (Extended Abstract)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We focus on Graph-Constrained Coalition Formation (GCCF), a widely studied subproblem of coalition formation where the set of valid coalitions is constrained by a graph. We propose COP-GCCF, a novel approach that models GCCF as a COP. We then solve such COP with a highly-parallel GPU implementation of Bucket Elimination, which is able to exploit the high constraint tightness of COP-GCCF. Results on realistic graphs, i.e., a crawl of the Twitter social graph, show that our approach outperforms state of the art algorithms (i.e., DyCE and IDP G ) by at least one order of magnitude, both in terms of runtime and memory. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A Cloaking Mechanism to Mitigate Market Manipulation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We propose a cloaking mechanism to deter spoofing, a form of manipulation in financial markets. The mechanism works by symmetrically concealing a specified number of price levels from the inside of the order book. To study the effectiveness of cloaking, we simulate markets populated with background traders and an exploiter, who strategically spoofs to profit. The traders follow two representative bidding strategies: the non-spoofable zero intelligence and the manipulable heuristic belief learning. Through empirical game-theoretic analysis across parametrically different environments, we evaluate surplus accrued by traders, and characterize the conditions under which cloaking mitigates manipulation and benefits market welfare. We further design sophisticated spoofing strategies that probe to reveal cloaked information, and find that the effort and risk exceed the gains. |
1 change: 1 addition & 0 deletions
1
...arative Study of Transactional and Semantic Approaches for Predicting Cascades on Twitter
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
The availability of massive social media data has enabled the prediction of people’s future behavioral trends at an unprecedented large scale. Information cascades study on Twitter has been an integral part of behavior analysis. A number of methods based on the transactional features (such as keyword frequency) and the semantic features (such as sentiment) have been proposed to predict the future cascading trends. However, an in-depth understanding of the pros and cons of semantic and transactional models is lacking. This paper conducts a comparative study of both approaches in predicting information diffusion with three mechanisms: retweet cascade, url cascade, and hashtag cascade. Experiments on Twitter data show that the semantic model outperforms the transactional model, if the exterior pattern is less directly observable (i.e. hashtag cascade). When it becomes more directly observable (i.e. retweet and url cascades), the semantic method yet delivers approximate accuracy (i.e. url cascade) or even worse accuracy (i.e. retweet cascade). Further, we demonstrate that the transactional and semantic models are not independent, and the performance gets greatly enhanced when combining both. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A Conversational Approach to Process-oriented Case-based Reasoning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Process-oriented case-based reasoning (POCBR) supports workflow modeling by retrieving and adapting workflows that have proved useful in the past. Current approaches typically require users to specify detailed queries, which can be a demanding task. Conversational case-based reasoning (CCBR) particularly addresses this problem by proposing methods that incrementally elicit the relevant features of the target problem in an interactive dialog. However, no CCBR approaches exist that are applicable for workflow cases that go beyond attribute-value representations such as labeled graphs. This paper closes this gap and presents a conversational POCBR approach (C-POCBR) in which questions related to structural properties of the workflow cases are generated automatically. An evaluation with cooking workflows indicates that C-POCBR can reduce the communication effort for users during retrieval. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A Decentralised Approach to Intersection Traffic Management
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Traffic congestion has a significant impact on quality of life and the economy. This paper presents a decentralised traffic management mechanism for intersections using a distributed constraint optimisation approach (DCOP). Our solution outperforms the state of the art solution both for stable traffic conditions (about 60% reduced waiting time) and robustness to unpredictable events. |
1 change: 1 addition & 0 deletions
1
data/2018/ijcai/A Deep Framework for Cross-Domain and Cross-System Recommendations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Cross-Domain Recommendation (CDR) and Cross-System Recommendations (CSR) are two of the promising solutions to address the long-standing data sparsity problem in recommender systems. They leverage the relatively richer information, e.g., ratings, from the source domain or system to improve the recommendation accuracy in the target domain or system. Therefore, finding an accurate mapping of the latent factors across domains or systems is crucial to enhancing recommendation accuracy. However, this is a very challenging task because of the complex relationships between the latent factors of the source and target domains or systems. To this end, in this paper, we propose a Deep framework for both Cross-Domain and Cross-System Recommendations, called DCDCSR, based on Matrix Factorization (MF) models and a fully connected Deep Neural Network (DNN). Specifically, DCDCSR first employs the MF models to generate user and item latent factors and then employs the DNN to map the latent factors across domains or systems. More importantly, we take into account the rating sparsity degrees of individual users and items in different domains or systems and use them to guide the DNN training process for utilizing the rating data more effectively. Extensive experiments conducted on three real-world datasets demonstrate that DCDCSR framework outperforms the state-of-the-art CDR and CSR approaches in terms of recommendation accuracy. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
Automatically recognising and extracting the reasoning expressed in natural language text is extremely | ||
|
||
demanding and only very recently has there been significant headway. While such argument mining focuses on logos (the content of what is said) evidence has demonstrated that using ethos (the character of the speaker) can sometimes be an even more powerful tool of influence. We study the UK parliamentary debates which furnish a rich source of ethos with linguistic material signalling the ethotic relationships between politicians. We then develop a novel deep modular recurrent neural network, DMRNN, approach and employ proven methods from argument mining and sentiment analysis to create an ethos mining pipeline. Annotation of ethotic statements is reliable and its extraction is robust (macro-F1 = 0.83), while annotation of polarity is perfect and its extraction is solid (macro-F1 = 0.84). By exploring correspondences between ethos in political discourse and major events in the political landscape through ethos analytics, we uncover tantalising evidence | ||
|
||
that identifying expressions of positive and negative ethotic sentiment is a powerful instrument for understanding the dynamics of governments. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
The problem of accurately measuring the similarity between graphs is at the core of many applications in a variety of disciplines. Most existing methods for graph similarity focus either on local or on global properties of graphs. However, even if graphs seem very similar from a local or a global perspective, they may exhibit different structure at different scales. In this paper, we present a general framework for graph similarity which takes into account structure at multiple different scales. The proposed framework capitalizes on the well-known k-core decomposition of graphs in order to build a hierarchy of nested subgraphs. We apply the framework to derive variants of four graph kernels, namely graphlet kernel, shortest-path kernel, Weisfeiler-Lehman subtree kernel, and pyramid match graph kernel. The framework is not limited to graph kernels, but can be applied to any graph comparison algorithm. The proposed framework is evaluated on several benchmark datasets for graph classification. In most cases, the core-based kernels achieve significant improvements in terms of classification accuracy over the base kernels, while their time complexity remains very attractive. |
1 change: 1 addition & 0 deletions
1
...018/ijcai/A Fast Algorithm for Generalized Arc Consistency of the Alldifferent Constraint
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
The alldifferent constraint is an essential ingredient of most Constraints Satisfaction Problems (CSPs). It has been known that the generalized arc consistency (GAC) of alldifferent constraints can be reduced to the maximum matching problem in a value graph. The redundant edges, which do not appear in any maximum matching of the value graph, can and should be removed from the graph. The existing methods attempt to identify these redundant edges by computing the strongly connected components after finding a maximum matching for the graph. Here, we present a novel theorem for identification of the redundant edges. We show that some of the redundant edges can be immediately detected after finding a maximum matching. Based on this theoretical result, we present an efficient algorithm for processing alldifferent constraints. Experimental results on real problems show that our new algorithm significantly outperforms the-state-of-art approaches. |
37 changes: 37 additions & 0 deletions
37
data/2018/ijcai/A Fast Algorithm for Optimally Finding Partially Disjoint Shortest Paths
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
The classical disjoint shortest path problem has recently recalled | ||
|
||
interests from researchers in the network planning and optimization | ||
|
||
community. However, the requirement of the shortest paths being completely | ||
|
||
vertex or edge disjoint might be too restrictive and demands much | ||
|
||
more resources in a network. Partially disjoint shortest paths, in | ||
|
||
which a bounded number of shared vertices or edges is allowed, balance | ||
|
||
between degree of disjointness and occupied network resources. | ||
|
||
|
||
|
||
In this paper, we consider the problem of finding k | ||
|
||
shortest paths which are edge disjoint but partially vertex disjoint. | ||
|
||
For a pair of distinct vertices in a network graph, the problem aims | ||
|
||
to optimally find k edge disjoint shortest paths among which | ||
|
||
at most a bounded number of vertices are shared by at least two paths. In particular, | ||
|
||
we present novel techniques for exactly solving the problem | ||
|
||
with a runtime that significantly improves | ||
|
||
the current best result. The | ||
|
||
proposed algorithm is also validated by computer experiments on both | ||
|
||
synthetic and real networks which demonstrate its superior efficiency | ||
|
||
of up to three orders of magnitude faster than the state of the art. |
1 change: 1 addition & 0 deletions
1
...A Fast Local Search Algorithm for Minimum Weight Dominating Set Problem on Massive Graphs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
The minimum weight dominating set (MWDS) problem is NP-hard and also important in many applications. Recent heuristic MWDS algorithms can hardly solve massive real world graphs effectively. In this paper, we design a fast local search algorithm called FastMWDS for the MWDS problem, which aims to obtain a good solution on massive graphs within a short time. In this novel local search framework, we propose two ideas to make it effective. Firstly, we design a new fast construction procedure with four reduction rules to cut down the size of massive graphs. Secondly, we propose the three-valued two-level configuration checking strategy to improve local search, which is interestingly a variant of configuration checking (CC) with two levels and multiple values. Experiment results on a broad range of massive real world graphs show that FastMWDS finds much better solutions than state of the art MWDS algorithms. |
1 change: 1 addition & 0 deletions
1
...A Fast and Accurate Method for Estimating People Flow from Spatiotemporal Population Data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Real-time spatiotemporal population data is attracting a great deal of attention for understanding crowd movements in cities.The data is the aggregation of personal location information and consists of just areas and the number of people in each area at certain time instants. Accordingly, it does not explicitly represent crowd movement. This paper proposes a probabilistic model based on collective graphical models that can estimate crowd movement from spatiotemporal population data. There are two technical challenges: (i) poor estimation accuracy as the traditional approach means the model would have too many degrees of freedom, (ii) excessive computation cost. Our key idea for overcoming these two difficulties is to model the transition probability between grid cells (cells hereafter) in a geospatial grid space by using three factors: departure probability of cells, gathering score of cells, and geographical distance between cells. These advances enable us to reduce the degrees of freedom of the model appropriately and derive an efficient estimation algorithm. To evaluate the performance of our method, we conduct experiments using real-world spatiotemporal population data. The results confirm the effectiveness of our method, both in estimation accuracy and computation cost. |
Oops, something went wrong.