-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8,074 changed files
with
7,920 additions
and
0 deletions.
The diff you're trying to view is too large. We only load the first 3000 changed files.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We explore the close relationship between the tensor-based computations performed during modern machine learning, and relational database computations. We consider how to make a very small set of changes to a modern RDBMS to make it suitable for distributed learning computations. Changes include adding better support for recursion, and optimization and execution of very large compute plans. We also show that there are key advantages to using an RDBMS as a machine learning platform. In particular, DBMSbased learning allows for trivial scaling to large data sets and especially large models, where different computational units operate on different parts of a model that may be too large to fit into RAM. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/(De)Randomized Smoothing for Certifiable Defense against Patch Attacks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Patch adversarial attacks on images, in which the attacker can distort pixels within a region of bounded size, are an important threat model since they provide a quantitative model for physical adversarial attacks. In this paper, we introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size, no patch adversarial examples exist. Our method is related to the broad class of randomized smoothing robustness schemes which provide high-confidence probabilistic robustness certificates. By exploiting the fact that patch attacks are more constrained than general sparse attacks, we derive meaningfully large robustness certificates. Additionally, the algorithm we propose is de-randomized, providing deterministic certificates. To the best of our knowledge, there exists only one prior method for certifiable defense against patch attacks, which relies on interval bound propagation. While this sole existing method performs well on MNIST, it has several limitations: it requires computationally expensive training, does not scale to ImageNet, and performs poorly on CIFAR-10. In contrast, our proposed method effectively addresses all of these issues: our classifier can be trained quickly, achieves high clean and certified robust accuracy on CIFAR-10, and provides certificates at the ImageNet scale. For example, for a 5*5 patch attack on CIFAR-10, our method achieves up to around 57.8% certified accuracy (with a classifier around 83.9% clean accuracy), compared to at most 30.3% certified accuracy for the existing method (with a classifier with around 47.8% clean accuracy), effectively establishing a new state-of-the-art. Code is available at this https URL. |
1 change: 1 addition & 0 deletions
1
...eurips/3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous Image Data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We consider the problem of obtaining dense 3D reconstructions of humans from single and partially occluded views. In such cases, the visual evidence is usually insufficient to identify a 3D reconstruction uniquely, so we aim at recovering several plausible reconstructions compatible with the input data. We suggest that ambiguities can be modelled more effectively by parametrizing the possible body shapes and poses via a suitable 3D model, such as SMPL for humans. We propose to learn a multi-hypothesis neural network regressor using a best-of-M loss, where each of the M hypotheses is constrained to lie on a manifold of plausible human poses by means of a generative model. We show that our method outperforms alternative approaches in ambiguous pose recovery on standard benchmarks for 3D humans, and in heavily occluded versions of these benchmarks. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/3D Self-Supervised Methods for Medical Imaging
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Self-supervised learning methods have witnessed a recent surge of interest after proving successful in multiple application fields. In this work, we leverage these techniques, and we propose 3D versions for five different self-supervised methods, in the form of proxy tasks. Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation. The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks. Our experiments show that pretraining models with our 3D tasks yields more powerful semantic representations, and enables solving downstream tasks more accurately and efficiently, compared to training the models from scratch and to pretraining them on 2D slices. We demonstrate the effectiveness of our methods on three downstream tasks from the medical imaging domain: i) Brain Tumor Segmentation from 3D MRI, ii) Pancreas Tumor Segmentation from 3D CT, and iii) Diabetic Retinopathy Detection from 2D Fundus images. In each task, we assess the gains in data-efficiency, performance, and speed of convergence. Interestingly, we also find gains when transferring the learned representations, by our methods, from a large unlabeled 3D corpus to a small downstream-specific dataset. We achieve results competitive to state-of-the-art solutions at a fraction of the computational expense. We publish our implementations for the developed algorithms (both 3D and 2D versions) as an open-source library, in an effort to allow other researchers to apply and extend our methods on their datasets. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/3D Shape Reconstruction from Vision and Touch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
When a toddler is presented a new toy, their instinctual behaviour is to pick it up and inspect it with their hand and eyes in tandem, clearly searching over its surface to properly understand what they are playing with. Here, touch provides high fidelity localized information while vision provides complementary global context. However, in 3D shape reconstruction, the complementary fusion of visual and haptic modalities remains largely unexplored. In this paper, we study this problem and present an effective chart-based approach to fusing vision and touch, which leverages advances in graph convolutional networks. To do so, we introduce a dataset of simulated touch and vision signals from the interaction between a robotic hand and a large array of 3D objects. Our results show that (1) leveraging both vision and touch signals consistently improves single-modality baselines; (2) our approach outperforms alternative modality fusion methods and strongly benefits from the proposed chart-based structure; (3) the reconstruction quality increases with the number of grasps provided; and (4) the touch information not only enhances the reconstruction at the touch site but also extrapolates to its local neighborhood. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A B Testing in Dense Large-Scale Networks: Design and Inference
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Design of experiments and estimation of treatment effects in large-scale networks, in the presence of strong interference, is a challenging and important problem. Most existing methods' performance deteriorates as the density of the network increases. In this paper, we present a novel strategy for accurately estimating the causal effects of a class of treatments in a dense large-scale network. First, we design an approximate randomized controlled experiment by solving an optimization problem to allocate treatments in the presence of competition among neighboring nodes. Then we apply an importance sampling adjustment to correct for any leftover bias (from the approximation) in estimating average treatment effects. We provide theoretical guarantees, verify robustness in a simulation study, and validate the scalability and usefulness of our procedure in a real-world experiment on a large social network. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Bandit Learning Algorithm and Applications to Auction Design
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We consider online bandit learning in which at every time step, an algorithm has to make a decision and then observe only its reward. The goal is to design efficient (polynomial-time) algorithms that achieve a total reward approximately close to that of the best fixed decision in hindsight. In this paper, we introduce a new notion of ( λ, µ ) -concave functions and present a bandit learning algorithm that achieves a performance guarantee which is characterized as a function of the concavity parameters λ and µ . The algorithm is based on the mirror descent algorithm in which the update directions follow the gradient of the multilinear extensions of the reward functions. The regret bound induced by our algorithm is (cid:101) O ( √ T ) which is nearly optimal. We apply our algorithm to auction design, specifically to welfare maximization, revenue maximization, and no-envy learning in auctions. In welfare maximization, we show that a version of fictitious play in smooth auctions guarantees a competitive regret bound which is determined by the smooth parameters. In revenue maximization, we consider the simultaneous second-price auctions with reserve prices in multi-parameter environments. We give a bandit algorithm which achieves the total revenue at least 1 / 2 times that of the best fixed reserve prices in hind-sight. In no-envy learning, we study the bandit item selection problem where the player valuation is submodular and provide an efficient 1 / 2 -approximation no-envy algorithm. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Bayesian Nonparametrics View into Deep Representations
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We investigate neural network representations from a probabilistic perspective. Specifically, we leverage Bayesian nonparametrics to construct models of neural activations in Convolutional Neural Networks (CNNs) and latent representations in Variational Autoencoders (VAEs). This allows us to formulate a tractable complexity measure for distributions of neural activations and to explore global structure of latent spaces learned by VAEs. We use this machinery to uncover how memorization and two common forms of regularization, i.e. dropout and input augmentation, influence representational complexity in CNNs. We demonstrate that networks that can exploit patterns in data learn vastly less complex representations than networks forced to memorize. We also show marked differences between effects of input augmentation and dropout, with the latter strongly depending on network width. Next, we investigate latent representations learned by standard β-VAEs and Maximum Mean Discrepancy (MMD) β-VAEs. We show that aggregated posterior in standard VAEs quickly collapses to the diagonal prior when regularization strength increases. MMD-VAEs, on the other hand, learn more complex posterior distributions, even with strong regularization. While this gives a richer sample space, MMD-VAEs do not exhibit independence of latent dimensions. Finally, we leverage our probabilistic models as an effective sampling strategy for latent codes, improving quality of samples in VAEs with rich posteriors. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Bayesian Perspective on Training Speed and Model Selection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We take a Bayesian perspective to illustrate a connection between training speed and the marginal likelihood in linear models. This provides two major insights: first, that a measure of a model's training speed can be used to estimate its marginal likelihood. Second, that this measure, under certain conditions, predicts the relative weighting of models in linear model combinations trained to minimize a regression loss. We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks. We further provide encouraging empirical evidence that the intuition developed in these settings also holds for deep neural networks trained with stochastic gradient descent. Our results suggest a promising new direction towards explaining why neural networks trained with stochastic gradient descent are biased towards functions that generalize well. |
1 change: 1 addition & 0 deletions
1
...2020/neurips/A Benchmark for Systematic Generalization in Grounded Language Understanding
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Human language users easily interpret expressions that describe unfamiliar situations composed from familiar parts ("greet the pink brontosaurus by the ferris wheel"). Modern neural networks, by contrast, struggle to interpret compositions unseen in training. In this paper, we introduce a new benchmark, gSCAN, for evaluating compositional generalization in models of situated language understanding. We take inspiration from standard models of meaning composition in formal linguistics. Going beyond an earlier related benchmark that focused on syntactic aspects of generalization, gSCAN defines a language grounded in the states of a grid world. This allows us to build novel generalization tasks that probe the acquisition of linguistically motivated rules. For example, agents must understand how adjectives such as 'small' are interpreted relative to the current world state or how adverbs such as 'cautiously' combine with new verbs. We test a strong multi-modal baseline model and a state-of-the-art compositional method finding that, in most cases, they fail dramatically when generalization requires systematic compositional rules. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Biologically Plausible Neural Network for Slow Feature Analysis
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Learning latent features from time series data is an important problem in both machine learning and brain function. One approach, called Slow Feature Analysis (SFA), leverages the slowness of many salient features relative to the rapidly varying input signals. Furthermore, when trained on naturalistic stimuli, SFA reproduces interesting properties of cells in the primary visual cortex and hippocampus, suggesting that the brain uses temporal slowness as a computational principle for learning latent features. However, despite the potential relevance of SFA for modeling brain function, there is currently no SFA algorithm with a biologically plausible neural network implementation, by which we mean an algorithm operates in the online setting and can be mapped onto a neural network with local synaptic updates. In this work, starting from an SFA objective, we derive an SFA algorithm, called Bio-SFA, with a biologically plausible neural network implementation. We validate Bio-SFA on naturalistic stimuli. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Boolean Task Algebra for Reinforcement Learning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We propose a framework for defining a Boolean algebra over the space of tasks. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-oriented value functions and restricting the transition dynamics of the tasks, an agent can solve these new tasks with no further learning. We prove that by composing these value functions in specific ways, we immediately recover the optimal policies for all tasks expressible under the Boolean algebra. We verify our approach in two domains, including a high-dimensional video game environment requiring function approximation, where an agent first learns a set of base skills, and then composes them to solve a super-exponential number of new tasks. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Catalyst Framework for Minimax Optimization
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We introduce a generic two-loop scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated dual problem and takes full advantage of existing gradient-based algorithms to solve a sequence of well-balanced strongly-convex-strongly-concave minimax problems. Despite its simplicity, this leads to a family of near-optimal algorithms with improved complexity over all existing methods designed for strongly-convex-concave minimax problems. Additionally, we obtain the first variance-reduced algorithms for this class of minimax problems with finite-sum structure and establish faster convergence rate than batch algorithms. Furthermore, when extended to the nonconvex-concave minimax optimization, our algorithm again achieves the state-of-the-art complexity for finding a stationary point. We carry out several numerical experiments showcasing the superiority of the Catalyst framework in practice. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Causal View on Robustness of Neural Networks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
We present a causal view on the robustness of neural networks against input manipulations, which applies not only to traditional classification tasks but also to general measurement data. Based on this view, we design a deep causal manipulation augmented model (deep CAMA) which explicitly models possible manipulations on certain causes leading to changes in the observed effect. We further develop data augmentation and test-time fine-tuning methods to improve deep CAMA's robustness. When compared with discriminative deep neural networks, our proposed model shows superior robustness against unseen manipulations. As a by-product, our model achieves disentangled representation which separates the representation of manipulations from those of other latent causes. |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Class of Algorithms for General Instrumental Variable Models
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Causal treatment effect estimation is a key problem that arises in a variety of real-world settings, from personalized medicine to governmental policy making. There has been a flurry of recent work in machine learning on estimating causal effects when one has access to an instrument. However, to achieve identifiability, they in general require one-size-fits-all assumptions such as an additive error model for the outcome. An alternative is partial identification, which provides bounds on the causal effect. Little exists in terms of bounding methods that can deal with the most general case, where the treatment itself can be continuous. Moreover, bounding methods generally do not allow for a continuum of assumptions on the shape of the causal effect that can smoothly trade off stronger background knowledge for more informative bounds. In this work, we provide a method for causal effect bounding in continuous distributions, leveraging recent advances in gradient-based methods for the optimization of computationally intractable objective functions. We demonstrate on a set of synthetic and real-world data that our bounds capture the causal effect when additive methods fail, providing a useful range of answers compatible with observation as opposed to relying on unwarranted structural assumptions. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
Current methods for training robust networks lead to a drop in test accuracy, which has led prior works to posit that a robustness-accuracy tradeoff may be inevitable in deep learning. We take a closer look at this phenomenon and first show that real image datasets are actually separated. With this property in mind, we then prove that robustness and accuracy should both be achievable for benchmark datasets through locally Lipschitz functions, and hence, there should be no inherent tradeoff between robustness and accuracy. Through extensive experiments with robustness methods, we argue that the gap between theory and practice arises from two limitations of current methods: either they fail to impose local Lipschitzness or they are insufficiently generalized. We explore combining dropout with robust training methods and obtain better generalization. We conclude that achieving robustness and accuracy in practice may require using methods that impose local Lipschitzness and augmenting them with deep learning generalization techniques. Code available at this https URL |
1 change: 1 addition & 0 deletions
1
data/2020/neurips/A Closer Look at the Training Strategy for Modern Meta-Learning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
The support/query (S/Q) episodic training strategy has been widely used in modern meta-learning algorithms and is believed to improve their generalization ability to test environments. This paper conducts a theoretical investigation of this training strategy on generalization. From a stability perspective, we analyze the generalization error bound of generic meta-learning algorithms trained with such strategy. We show that the S/Q episodic training strategy naturally leads to a counterintuitive generalization bound of O (1 / √ n ) , which only depends on the task number n but independent of the inner-task sample size m . Under the common assumption m << n for few-shot learning, the bound of O (1 / √ n ) implies strong generalization guarantees for modern meta-learning algorithms in the few-shot regime. To further explore the influence of training strategies on generalization, we propose a leave-one-out (LOO) training strategy for meta-learning and compare it with S/Q training. Experiments on standard few-shot regression and classification tasks with popular meta-learning algorithms validate our analysis. |
Oops, something went wrong.