Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ionization rates #2897

Merged
merged 20 commits into from
Jan 22, 2025
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
368 changes: 368 additions & 0 deletions docs/physics/plasma/equilibrium/tardis_solver_cmfgen.ipynb

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion tardis/plasma/electron_energy_distribution/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ class ThermalElectronEnergyDistribution(ElectronEnergyDistribution):
temperature : Quantity
Electron temperatures in Kelvin.
number_density : Quantity
Electron number densities in g/cm^3.
Electron number densities in cm^-3.
"""

temperature: u.Quantity
Expand Down
15 changes: 15 additions & 0 deletions tardis/plasma/equilibrium/rates/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,24 @@
UpsilonCMFGENSolver,
UpsilonRegemorterSolver,
)
from tardis.plasma.equilibrium.rates.collisional_ionization_rates import (
CollisionalIonizationRateSolver,
)
from tardis.plasma.equilibrium.rates.collisional_ionization_strengths import (
CollisionalIonizationSeaton,
)
from tardis.plasma.equilibrium.rates.collisional_rates import (
ThermalCollisionalRateSolver,
)
from tardis.plasma.equilibrium.rates.photoionization_rates import (
AnalyticPhotoionizationRateSolver,
EstimatedPhotoionizationRateSolver,
)
from tardis.plasma.equilibrium.rates.photoionization_strengths import (
AnalyticPhotoionizationCoeffSolver,
EstimatedPhotoionizationCoeffSolver,
SpontaneousRecombinationCoeffSolver,
)
from tardis.plasma.equilibrium.rates.radiative_rates import (
RadiativeRatesSolver,
)
50 changes: 50 additions & 0 deletions tardis/plasma/equilibrium/rates/collisional_ionization_rates.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
from tardis.plasma.equilibrium.rates.collisional_ionization_strengths import (
CollisionalIonizationSeaton,
)


class CollisionalIonizationRateSolver:
"""Solver for collisional ionization and recombination rates."""

def __init__(self, photoionization_cross_sections):
self.photoionization_cross_sections = photoionization_cross_sections

def solve(self, electron_temperature, saha_factor, approximation="seaton"):
"""Solve the collisional ionization and recombination rates.

Parameters
----------
electron_temperature : u.Quantity
Electron temperatures per cell
saha_factor : pandas.DataFrame, dtype float
The Saha factor for each cell. Indexed by atom number, ion number, level number.
approximation : str, optional
The rate approximation to use, by default "seaton"

Returns
-------
pd.DataFrame
Collisional ionization rates
pd.DataFrame
Collisional recombination rates

Raises
------
ValueError
If an unsupported approximation is requested.
"""
if approximation == "seaton":
strength_solver = CollisionalIonizationSeaton(
self.photoionization_cross_sections
)
else:
raise ValueError(f"approximation {approximation} not supported")

collision_ionization_rates = strength_solver.solve(electron_temperature)

# Inverse of the ionization rate for equilibrium
collision_recombination_rates = collision_ionization_rates.multiply(
saha_factor.loc[collision_ionization_rates.index]
)

return collision_ionization_rates, collision_recombination_rates
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import astropy.units as u
import numpy as np
import pandas as pd

from tardis import constants as const

H = const.h.cgs
K_B = const.k_B.cgs


class CollisionalIonizationSeaton:
"""Solver for collisional ionization rate coefficients in the Seaton approximation."""

def __init__(self, photoionization_cross_sections):
self.photoionization_cross_sections = photoionization_cross_sections

def solve(self, electron_temperature):
"""
Parameters
----------
electron_temperature : u.Quantity
The electron temperature in K.

Returns
-------
pandas.DataFrame, dtype float
The rate coefficient for collisional ionization in the Seaton
approximation. Multiply with the electron density and the
level number density to obtain the total rate.

Notes
-----
The rate coefficient for collisional ionization in the Seaton approximation
is calculated according to Eq. 9.60 in [1].

References
----------
.. [1] Hubeny, I. and Mihalas, D., "Theory of Stellar Atmospheres". 2014.
"""
photo_ion_cross_sections_threshold = (
self.photoionization_cross_sections.groupby(level=[0, 1, 2]).first()
)
nu_i = photo_ion_cross_sections_threshold["nu"]
u0s = (
nu_i.values[np.newaxis].T * u.Hz / electron_temperature * (H / K_B)
)
factor = np.exp(-u0s) / u0s
factor = pd.DataFrame(factor, index=nu_i.index)
coll_ion_coeff = 1.55e13 * photo_ion_cross_sections_threshold["x_sect"]
coll_ion_coeff = factor.multiply(coll_ion_coeff, axis=0)
coll_ion_coeff = coll_ion_coeff.divide(
np.sqrt(electron_temperature), axis=1
)

ion_number = coll_ion_coeff.index.get_level_values("ion_number").values
coll_ion_coeff[ion_number == 0] *= 0.1
coll_ion_coeff[ion_number == 1] *= 0.2
coll_ion_coeff[ion_number >= 2] *= 0.3
return coll_ion_coeff
214 changes: 214 additions & 0 deletions tardis/plasma/equilibrium/rates/photoionization_rates.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
from tardis.plasma.equilibrium.rates.photoionization_strengths import (
AnalyticPhotoionizationCoeffSolver,
EstimatedPhotoionizationCoeffSolver,
SpontaneousRecombinationCoeffSolver,
)


class AnalyticPhotoionizationRateSolver:
"""Solve the photoionization and spontaneous recombination rates in the
case where the radiation field is computed analytically.
"""

def __init__(self, photoionization_cross_sections):
self.photoionization_cross_sections = photoionization_cross_sections

self.spontaneous_recombination_rate_coeff_solver = (
SpontaneousRecombinationCoeffSolver(
self.photoionization_cross_sections
)
)

def compute_rates(
self,
photoionization_rate_coeff,
stimulated_recombination_rate_coeff,
spontaneous_recombination_rate_coeff,
level_number_density,
ion_number_density,
electron_number_density,
saha_factor,
):
"""Compute the photoionization and spontaneous recombination rates

Parameters
----------
photoionization_rate_coeff : pd.DataFrame
The photoionization rate coefficients for each transition.
Columns are cells.
stimulated_recombination_rate_coeff : pd.DataFrame
The stimulated recombination rate coefficients for each transition.
Columns are cells.
spontaneous_recombination_rate_coeff : pd.DataFrame
The spontaneous recombination rate coefficients for each transition.
Columns are cells.
level_number_density : pd.DataFrame
The electron energy level number density. Columns are cells.
ion_number_density : pd.DataFrame
The ion number density. Columns are cells.
electron_number_density : u.Quantity
The free electron number density per cell.
saha_factor : pd.DataFrame
The LTE population factor. Columns are cells.

Returns
-------
pd.DataFrame
Photoionization rate for each electron energy level. Columns are cells
pd.DataFrame
Spontaneous recombination rate for each electron energy level. Columns are cells
"""
photoionization_rate = (
photoionization_rate_coeff * level_number_density
- saha_factor
* stimulated_recombination_rate_coeff
* ion_number_density
* electron_number_density
)
spontaneous_recombination_rate = (
saha_factor
* spontaneous_recombination_rate_coeff
* ion_number_density
* electron_number_density
)

return photoionization_rate, spontaneous_recombination_rate

def solve(
self,
dilute_blackbody_radiationfield_state,
electron_energy_distribution,
level_number_density,
ion_number_density,
saha_factor,
):
"""Solve the photoionization and spontaneous recombination rates in the
case where the radiation field is not estimated.

Parameters
----------
dilute_blackbody_radiationfield_state : DiluteBlackBodyRadiationFieldState
A dilute black body radiation field state.
electron_energy_distribution : ThermalElectronEnergyDistribution
Electron properties.
level_number_density : pd.DataFrame
Electron energy level number density. Columns are cells.
ion_number_density : pd.DataFrame
Ion number density. Columns are cells.
saha_factor : pd.DataFrame
Saha factor: the LTE level number density divided by the LTE ion
number density and the electron number density.

Returns
-------
pd.DataFrame
Photoionization rate. Columns are cells.
pd.DataFrame
Spontaneous recombination rate. Columns are cells.
"""
photoionization_rate_coeff_solver = AnalyticPhotoionizationCoeffSolver(
self.photoionization_cross_sections
)

photoionization_rate_coeff, stimulated_recombination_rate_coeff = (
photoionization_rate_coeff_solver.solve(
dilute_blackbody_radiationfield_state,
electron_energy_distribution.temperature,
)
)

spontaneous_recombination_rate_coeff = (
self.spontaneous_recombination_rate_coeff_solver.solve(
electron_energy_distribution.temperature
)
)

return self.compute_rates(
photoionization_rate_coeff,
stimulated_recombination_rate_coeff,
spontaneous_recombination_rate_coeff,
level_number_density,
ion_number_density,
electron_energy_distribution.number_density,
saha_factor,
)


class EstimatedPhotoionizationRateSolver(AnalyticPhotoionizationRateSolver):
"""Solve the photoionization and spontaneous recombination rates in the
case where the radiation field is estimated by Monte Carlo processes.
"""

def __init__(
self, photoionization_cross_sections, level2continuum_edge_idx
):
super().__init__(
photoionization_cross_sections,
)
self.level2continuum_edge_idx = level2continuum_edge_idx

def solve(
self,
electron_energy_distribution,
radfield_mc_estimators,
time_simulation,
volume,
level_number_density,
ion_number_density,
saha_factor,
):
"""Solve the photoionization and spontaneous recombination rates in the
case where the radiation field is estimated by Monte Carlo processes.

Parameters
----------
electron_energy_distribution : ThermalElectronEnergyDistribution
Electron properties.
radfield_mc_estimators : RadiationFieldMCEstimators
Estimators of the radiation field properties.
time_simulation : u.Quantity
Time of simulation.
volume : u.Quantity
Volume per cell.
level_number_density : pd.DataFrame
Electron energy level number density. Columns are cells.
ion_number_density : pd.DataFrame
Ion number density. Columns are cells.
saha_factor : pd.DataFrame
Saha factor: the LTE level number density divided by the LTE ion
number density and the electron number density.

Returns
-------
pd.DataFrame
Photoionization rate. Columns are cells.
pd.DataFrame
Spontaneous recombination rate. Columns are cells.
"""
photoionization_rate_coeff_solver = EstimatedPhotoionizationCoeffSolver(
self.level2continuum_edge_idx
)

photoionization_rate_coeff, stimulated_recombination_rate_coeff = (
photoionization_rate_coeff_solver.solve(
radfield_mc_estimators,
time_simulation,
volume,
)
)

spontaneous_recombination_rate_coeff = (
self.spontaneous_recombination_rate_coeff_solver.solve(
electron_energy_distribution.temperature
)
)

return self.compute_rates(
photoionization_rate_coeff,
stimulated_recombination_rate_coeff,
spontaneous_recombination_rate_coeff,
level_number_density,
ion_number_density,
electron_energy_distribution.number_density,
saha_factor,
)
Loading
Loading