Skip to content

tensorlayer/benchmarks

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Comparsion of TensorFlow Wrappers

Run Keras, TensorLayer and Tflearn with same model and data on a same GPU machine.

The parameter initialization may have slightly different, but would not effect the speed.

Feel free to PUSH !

Speed of MLP

GPU: GTX980

TensorFlow: r0.10

Data: MNIST train:50k val:10k test:10k

Model: 784-800-800-10

Num of epochs: 200

Batch size: 500

Keras: 282.475250s = 1.41 s/epoch

TensorLayer: 116.670947s = 0.58 s/epoch

Tflearn:

Arcyfelix's test

Setup

GPU: GTX970

Driver Version: 375.39

TensorFlow: 1.0.1

Data: MNIST train: 50k val: 10k test: 10k

Speed of MLP

Num of epochs: 200 Batch size: 500 FC-x = Fully Connected / Dense with Relu activation with x number of neurons DP = Dropout

Architecture / Library Keras TFLearn TensorLayer
INPUT + FC-800 + DP + FC-800 + DP + OUTPUT 173.825s 337.312s To be tested
INPUT + FC-2000 + DP + FC-2000 + DP + OUTPUT 377.443s 477.034s To be tested
INPUT + FC-4000 + DP + FC-4000 + DP + OUTPUT 1007.613s 872.662s To be tested
INPUT + FC-4000 + DP + FC-4000 + FC-4000 + DP + OUTPUT 1715.068s 1313.363s To be tested

Speed of CNN

Num of epochs: 20 Batch size: 100 Conv2d[kernel-x, kernel-y]-filters = Convolutional layer with padding = 'same'

Architecture / Library Keras TFLearn TensorLayer
INPUT + Conv2d[3,3]-8 + Conv2d[3,3]-8 + FC-100 + DP + FC-100 + DP + OUTPUT 79.999s 84.487s To be tested
INPUT + Conv2d[3,3]-32 + Conv2d[3,3]-32 + FC-100 + DP + FC-100 + DP + OUTPUT 132.741s 125.306s To be tested
INPUT + Conv2d[3,3]-64 + Conv2d[3,3]-64 + FC-100 + DP + FC-100 + DP + OUTPUT 230.574s 204.685s To be tested
INPUT + Conv2d[3,3]-128 + Conv2d[3,3]-128 + FC-100 + DP + FC-100 + DP + OUTPUT 477.009s 407.489s To be tested
INPUT + Conv2d[3,3]-256 + Conv2d[3,3]-256 + FC-100 + DP + FC-100 + DP + OUTPUT 1186.775s 1037.954s To be tested

Speed of LSTM

About

Comparison of TensorFlow Wrappers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%