Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Xgboost classification #71

Merged
merged 4 commits into from
Dec 17, 2024
Merged

Xgboost classification #71

merged 4 commits into from
Dec 17, 2024

Conversation

EmilHvitfeldt
Copy link
Member

This PR adds hard and soft predictions for classification models for xgboost

library(parsnip)
library(orbital)

# better printing
iris <- tibble::as_tibble(iris)

bt_spec <- boost_tree(mode = "classification", engine = "xgboost")
bt_fit <- fit(bt_spec, Species ~ ., iris)

orb_obj <- orbital(bt_fit, type = "class")
predict(orb_obj, iris)
#> # A tibble: 150 × 1
#>    .pred_class
#>    <chr>      
#>  1 setosa     
#>  2 setosa     
#>  3 setosa     
#>  4 setosa     
#>  5 setosa     
#>  6 setosa     
#>  7 setosa     
#>  8 setosa     
#>  9 setosa     
#> 10 setosa     
#> # ℹ 140 more rows

orb_obj <- orbital(bt_fit, type = "prob")
predict(orb_obj, iris)
#> # A tibble: 150 × 3
#>    .pred_setosa .pred_versicolor .pred_virginica
#>           <dbl>            <dbl>           <dbl>
#>  1        0.984          0.00916         0.00716
#>  2        0.982          0.00915         0.00861
#>  3        0.984          0.00916         0.00716
#>  4        0.984          0.00916         0.00716
#>  5        0.984          0.00916         0.00716
#>  6        0.984          0.00916         0.00716
#>  7        0.984          0.00916         0.00716
#>  8        0.984          0.00916         0.00716
#>  9        0.982          0.00915         0.00861
#> 10        0.984          0.00916         0.00716
#> # ℹ 140 more rows

orb_obj <- orbital(bt_fit, type = c("class", "prob"))
predict(orb_obj, iris)
#> # A tibble: 150 × 4
#>    .pred_class .pred_setosa .pred_versicolor .pred_virginica
#>    <chr>              <dbl>            <dbl>           <dbl>
#>  1 setosa             0.984          0.00916         0.00716
#>  2 setosa             0.982          0.00915         0.00861
#>  3 setosa             0.984          0.00916         0.00716
#>  4 setosa             0.984          0.00916         0.00716
#>  5 setosa             0.984          0.00916         0.00716
#>  6 setosa             0.984          0.00916         0.00716
#>  7 setosa             0.984          0.00916         0.00716
#>  8 setosa             0.984          0.00916         0.00716
#>  9 setosa             0.982          0.00915         0.00861
#> 10 setosa             0.984          0.00916         0.00716
#> # ℹ 140 more rows

Created on 2024-12-16 with reprex v2.1.0

@EmilHvitfeldt EmilHvitfeldt merged commit 2d923ac into main Dec 17, 2024
10 of 12 checks passed
@EmilHvitfeldt EmilHvitfeldt deleted the xgboost-classification branch December 17, 2024 00:38
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant