Skip to content

Commit

Permalink
Proof is done
Browse files Browse the repository at this point in the history
  • Loading branch information
tomsch420 committed May 31, 2024
1 parent 62acad7 commit 0ecce90
Showing 1 changed file with 19 additions and 11 deletions.
30 changes: 19 additions & 11 deletions examples/product_spaces.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -681,8 +681,16 @@
" (A \\times B)^c &= (A^c \\times B) \\cup (A \\times B^c) \\cup (A^c \\times B^c) \\\\\n",
" &= (A^c \\times B) \\cup (A^c \\times B^c) \\cup (A \\times B^c) \\\\\n",
" &= ( A^c \\times (B \\cup B^c) ) \\cup (A \\times B^c) \\\\\n",
" &= (A^c \\times \\mathbb{B}) \\cup (A \\times B^C) \\square\n",
" &= (A^c \\times \\mathbb{B}) \\cup (A \\times B^C) \\qquad \\square\n",
"\\end{align*}\n",
"\n"
],
"id": "511cdcad45f76bab"
},
{
"metadata": {},
"cell_type": "markdown",
"source": [
"\n",
"### Induction Step\n",
"\n",
Expand All @@ -691,17 +699,17 @@
"\\end{align*}\n",
"Proof:\n",
"\\begin{align*}\n",
" (A \\times B \\times C)^c &= (A^c \\times B \\times C) \\cup (A \\times B^c \\times C) \\cup (A \\times B \\times C^c) \\cup \n",
" (A^c \\times B^c \\times C) \\cup (A^c \\times B \\times C^c) \\cup (A \\times B^c \\times C^c) \\cup \n",
" (A^c \\times B^c \\times C^c) \\\\\n",
" &= (C \\times \\underbrace{(A^c \\times B) \\cup (A \\times B^c) \\cup (A^c \\times B^c))}_{\\text{Induction Assumption}} \\cup\n",
" (C^c \\times \\underbrace{(A^c \\times B) \\cup (A \\times B^c) \\cup (A^c \\times B^c))}_{\\text{Induction Assumption}} \\cup (A \\times B \\times C^c) \\\\\n",
" &= (C \\times (A^c \\times \\mathbb{B}) \\cup (A \\times B^C)) \\cup \n",
" (C^c \\times (A^c \\times \\mathbb{B}) \\cup (A \\times B^C)) \\cup (A \\times B \\times C^c)\\\\\n",
" &= \n",
"\\end{align*}\n"
" (A \\times B \\times C)^c &= (A \\times B^c \\times C) \\cup (A \\times B \\times C^c) \\cup (A \\times B^c \\times C^c)\\\\\n",
" & \\cup \\, (A^c \\times B \\times C)\\cup(A^c \\times B^c \\times C) \\cup (A^c \\times B \\times C^c) \\cup (A^c \\times B^c \\times C^c) \\\\ \n",
" &= (A \\times \\underbrace{((B^c \\times C) \\cup (B \\times C^c) \\cup (B^c \\times C^c))}_{\\text{Induction Assumption}} \\\\\n",
" &\\cup \\, (A^c \\times \\underbrace{((B \\times C)\\cup(B^c \\times C) \\cup (B \\times C^c) \\cup (B^c \\times C^c))}_{\\mathbb{B} \\times \\mathbb{C}}) \\\\\n",
" &= (A \\times (B^c \\times \\mathbb{C}) \\cup (B \\times C^C)) \\cup (A^c \\times \\mathbb{B} \\times \\mathbb{C}) \\\\\n",
" &= (A^c \\times \\mathbb{B} \\times \\mathbb{C}) \\cup (A \\times B^C \\times \\mathbb{C} ) \\cup (A \\times B \\times C^c) \\qquad \\square\n",
"\\end{align*}\n",
"\n",
"Furthermore, take notice that the complement $(A \\times B \\times C)^c$ as expressed in this proof is a disjoint union."
],
"id": "511cdcad45f76bab"
"id": "4ca5ba06adf3eb6a"
},
{
"cell_type": "markdown",
Expand Down

0 comments on commit 0ecce90

Please sign in to comment.