You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[AAAI-2024] Follower: This study addresses the challenging problem of decentralized lifelong multi-agent pathfinding. The proposed Follower approach utilizes a combination of a planning algorithm for constructing a long-term plan and reinforcement learning for resolving local conflicts.
[AAAI-2024] MATS-LP addresses the challenging problem of decentralized lifelong multi-agent pathfinding. The proposed approach utilizes a combination of Monte Carlo Tree Search and reinforcement learning for resolving conflicts.
DataSets links for recommender systems research, in particular for transfer learning, user representation, pre-training,lifelong learning, cold start recommendation
[AAAI-2024] Follower: This study addresses the challenging problem of decentralized lifelong multi-agent pathfinding. The proposed Follower approach utilizes a combination of a planning algorithm for constructing a long-term plan and reinforcement learning for resolving local conflicts.
[AAAI-2024] MATS-LP addresses the challenging problem of decentralized lifelong multi-agent pathfinding. The proposed approach utilizes a combination of Monte Carlo Tree Search and reinforcement learning for resolving conflicts.