Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README for 1.31.0 / 23.08 #752

Merged
merged 1 commit into from
Aug 28, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 88 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,91 @@ See the License for the specific language governing permissions and
limitations under the License.
-->

**Warning**
You are currently on the r23.08 branch which tracks stabilization towards the next release.
This branch is not usable during stabilization.
[![License](https://img.shields.io/badge/License-Apache_2.0-lightgrey.svg)](https://opensource.org/licenses/Apache-2.0)

# Triton Model Analyzer

Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
<br><br>

# Features

### Search Modes

- [Quick Search](docs/config_search.md#quick-search-mode) will **sparsely** search the [Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
[Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
[Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups) spaces by utilizing a heuristic hill-climbing algorithm to help you quickly find a more optimal configuration

- [Automatic Brute Search](docs/config_search.md#automatic-brute-search) will **exhaustively** search the
[Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
[Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
[Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups)
parameters of your model configuration

- [Manual Brute Search](docs/config_search.md#manual-brute-search) allows you to create manual sweeps for every parameter that can be specified in the model configuration

### Model Types

- [Ensemble Model Search](docs/config_search.md#ensemble-model-search): Model Analyzer can help you find the optimal
settings when profiling an ensemble model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm

- [BLS Model Search](docs/config_search.md#bls-model-search): Model Analyzer can help you find the optimal
settings when profiling a BLS model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm

- [Multi-Model Search](docs/config_search.md#multi-model-search-mode): **EARLY ACCESS** - Model Analyzer can help you
find the optimal settings when profiling multiple concurrent models, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm

### Other Features

- [Detailed and summary reports](docs/report.md): Model Analyzer is able to generate
summarized and detailed reports that can help you better understand the trade-offs
between different model configurations that can be used for your model.

- [QoS Constraints](docs/config.md#constraint): Constraints can help you
filter out the Model Analyzer results based on your QoS requirements. For
example, you can specify a latency budget to filter out model configurations
that do not satisfy the specified latency threshold.
<br><br>

# Examples and Tutorials

### **Single Model**

See the [Single Model Quick Start](docs/quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple PyTorch model.

### **Multi Model**

See the [Multi-model Quick Start](docs/mm_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on two models running concurrently on the same GPU.
<br><br>

# Documentation

- [Installation](docs/install.md)
- [Model Analyzer CLI](docs/cli.md)
- [Launch Modes](docs/launch_modes.md)
- [Configuring Model Analyzer](docs/config.md)
- [Model Analyzer Metrics](docs/metrics.md)
- [Model Config Search](docs/config_search.md)
- [Checkpointing](docs/checkpoints.md)
- [Model Analyzer Reports](docs/report.md)
- [Deployment with Kubernetes](docs/kubernetes_deploy.md)
<br><br>

# Reporting problems, asking questions

We appreciate any feedback, questions or bug reporting regarding this
project. When help with code is needed, follow the process outlined in
the Stack Overflow (https://stackoverflow.com/help/mcve)
document. Ensure posted examples are:

- minimal – use as little code as possible that still produces the
same problem

- complete – provide all parts needed to reproduce the problem. Check
if you can strip external dependency and still show the problem. The
less time we spend on reproducing problems the more time we have to
fix it

- verifiable – test the code you're about to provide to make sure it
reproduces the problem. Remove all other problems that are not
related to your request/question.
Loading