Skip to content

Commit

Permalink
feat: Report histogram metrics to Triton metrics server (#58)
Browse files Browse the repository at this point in the history
  • Loading branch information
yinggeh authored and mc-nv committed Aug 19, 2024
1 parent 843cbdd commit c2cdab2
Show file tree
Hide file tree
Showing 3 changed files with 403 additions and 0 deletions.
65 changes: 65 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -202,6 +202,71 @@ you need to specify a different `shm-region-prefix-name` for each server. See
[here](https://github.com/triton-inference-server/python_backend#running-multiple-instances-of-triton-server)
for more information.

## Triton Metrics
Starting with the 24.08 release of Triton, users can now obtain specific
vLLM metrics by querying the Triton metrics endpoint (see complete vLLM metrics
[here](https://docs.vllm.ai/en/latest/serving/metrics.html)). This can be
accomplished by launching a Triton server in any of the ways described above
(ensuring the build code / container is 24.08 or later) and querying the server.
Upon receiving a successful response, you can query the metrics endpoint by entering
the following:
```bash
curl localhost:8002/metrics
```
VLLM stats are reported by the metrics endpoint in fields that are prefixed with
`vllm:`. Triton currently supports reporting of the following metrics from vLLM.
```bash
# Number of prefill tokens processed.
counter_prompt_tokens
# Number of generation tokens processed.
counter_generation_tokens
# Histogram of time to first token in seconds.
histogram_time_to_first_token
# Histogram of time per output token in seconds.
histogram_time_per_output_token
```
Your output for these fields should look similar to the following:
```bash
# HELP vllm:prompt_tokens_total Number of prefill tokens processed.
# TYPE vllm:prompt_tokens_total counter
vllm:prompt_tokens_total{model="vllm_model",version="1"} 10
# HELP vllm:generation_tokens_total Number of generation tokens processed.
# TYPE vllm:generation_tokens_total counter
vllm:generation_tokens_total{model="vllm_model",version="1"} 16
# HELP vllm:time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE vllm:time_to_first_token_seconds histogram
vllm:time_to_first_token_seconds_count{model="vllm_model",version="1"} 1
vllm:time_to_first_token_seconds_sum{model="vllm_model",version="1"} 0.03233122825622559
vllm:time_to_first_token_seconds_bucket{model="vllm_model",version="1",le="0.001"} 0
vllm:time_to_first_token_seconds_bucket{model="vllm_model",version="1",le="0.005"} 0
...
vllm:time_to_first_token_seconds_bucket{model="vllm_model",version="1",le="+Inf"} 1
# HELP vllm:time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE vllm:time_per_output_token_seconds histogram
vllm:time_per_output_token_seconds_count{model="vllm_model",version="1"} 15
vllm:time_per_output_token_seconds_sum{model="vllm_model",version="1"} 0.04501533508300781
vllm:time_per_output_token_seconds_bucket{model="vllm_model",version="1",le="0.01"} 14
vllm:time_per_output_token_seconds_bucket{model="vllm_model",version="1",le="0.025"} 15
...
vllm:time_per_output_token_seconds_bucket{model="vllm_model",version="1",le="+Inf"} 15
```
To enable vLLM engine colleting metrics, "disable_log_stats" option need to be either false
or left empty (false by default) in [model.json](https://github.com/triton-inference-server/vllm_backend/blob/main/samples/model_repository/vllm_model/1/model.json).
```bash
"disable_log_stats": false
```
*Note:* vLLM metrics are not reported to Triton metrics server by default
due to potential performance slowdowns. To enable vLLM model's metrics
reporting, please add following lines to its config.pbtxt as well.
```bash
parameters: {
key: "REPORT_CUSTOM_METRICS"
value: {
string_value:"yes"
}
}
```

## Referencing the Tutorial

You can read further in the
Expand Down
164 changes: 164 additions & 0 deletions ci/L0_backend_vllm/metrics_test/vllm_metrics_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import os
import re
import sys
import unittest
from functools import partial

import requests
import tritonclient.grpc as grpcclient
from tritonclient.utils import *

sys.path.append("../../common")
from test_util import TestResultCollector, UserData, callback, create_vllm_request


class VLLMTritonMetricsTest(TestResultCollector):
def setUp(self):
self.triton_client = grpcclient.InferenceServerClient(url="localhost:8001")
self.tritonserver_ipaddr = os.environ.get("TRITONSERVER_IPADDR", "localhost")
self.vllm_model_name = "vllm_opt"
self.prompts = [
"The most dangerous animal is",
"The capital of France is",
"The future of AI is",
]
self.sampling_parameters = {"temperature": "0", "top_p": "1"}

def get_vllm_metrics(self):
"""
Store vllm metrics in a dictionary.
"""
r = requests.get(f"http://{self.tritonserver_ipaddr}:8002/metrics")
r.raise_for_status()

# Regular expression to match the pattern
pattern = r"^(vllm:[^ {]+)(?:{.*})? ([0-9.-]+)$"
vllm_dict = {}

# Find all matches in the text
matches = re.findall(pattern, r.text, re.MULTILINE)

for match in matches:
key, value = match
vllm_dict[key] = float(value) if "." in value else int(value)

return vllm_dict

def vllm_infer(
self,
prompts,
sampling_parameters,
model_name,
):
"""
Helper function to send async stream infer requests to vLLM.
"""
user_data = UserData()
number_of_vllm_reqs = len(prompts)

self.triton_client.start_stream(callback=partial(callback, user_data))
for i in range(number_of_vllm_reqs):
request_data = create_vllm_request(
prompts[i],
i,
False,
sampling_parameters,
model_name,
True,
)
self.triton_client.async_stream_infer(
model_name=model_name,
inputs=request_data["inputs"],
request_id=request_data["request_id"],
outputs=request_data["outputs"],
parameters=sampling_parameters,
)

for _ in range(number_of_vllm_reqs):
result = user_data._completed_requests.get()
if type(result) is InferenceServerException:
print(result.message())
self.assertIsNot(type(result), InferenceServerException, str(result))

output = result.as_numpy("text_output")
self.assertIsNotNone(output, "`text_output` should not be None")

self.triton_client.stop_stream()

def test_vllm_metrics(self):
# Test vLLM metrics
self.vllm_infer(
prompts=self.prompts,
sampling_parameters=self.sampling_parameters,
model_name=self.vllm_model_name,
)
metrics_dict = self.get_vllm_metrics()

# vllm:prompt_tokens_total
self.assertEqual(metrics_dict["vllm:prompt_tokens_total"], 18)
# vllm:generation_tokens_total
self.assertEqual(metrics_dict["vllm:generation_tokens_total"], 48)

# vllm:time_to_first_token_seconds
self.assertEqual(metrics_dict["vllm:time_to_first_token_seconds_count"], 3)
self.assertGreater(metrics_dict["vllm:time_to_first_token_seconds_sum"], 0)
self.assertEqual(metrics_dict["vllm:time_to_first_token_seconds_bucket"], 3)
# vllm:time_per_output_token_seconds
self.assertEqual(metrics_dict["vllm:time_per_output_token_seconds_count"], 45)
self.assertGreater(metrics_dict["vllm:time_per_output_token_seconds_sum"], 0)
self.assertEqual(metrics_dict["vllm:time_per_output_token_seconds_bucket"], 45)

def test_vllm_metrics_disabled(self):
# Test vLLM metrics
self.vllm_infer(
prompts=self.prompts,
sampling_parameters=self.sampling_parameters,
model_name=self.vllm_model_name,
)
metrics_dict = self.get_vllm_metrics()

# No vLLM metric found
self.assertEqual(len(metrics_dict), 0)

def test_vllm_metrics_refused(self):
# Test vLLM metrics
self.vllm_infer(
prompts=self.prompts,
sampling_parameters=self.sampling_parameters,
model_name=self.vllm_model_name,
)
with self.assertRaises(requests.exceptions.ConnectionError):
self.get_vllm_metrics()

def tearDown(self):
self.triton_client.close()


if __name__ == "__main__":
unittest.main()
Loading

0 comments on commit c2cdab2

Please sign in to comment.