-
Notifications
You must be signed in to change notification settings - Fork 347
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add an efficient reservoir sampling aggregator
This aggregator uses Li's "Algorithm L", a simple yet efficient sampling method, with modifications to support a monoidal setting. A JMH benchmark was added for both this and the old priority-queue algoritm. In a single-threaded benchmark on an Intel Core i9-10885H, this algorithm can outperform the old one by an order of magnitude or more, depending on the parameters. Because of this, the new algorithm was made the default for Aggregtor.reservoirSample(). Unit tests were added for both algorithms. These are probabilistic and are expected to fail on some 0.1% of times, per test case (p-value is set to 0.001). Optimized overloads of aggregation methods append/appendAll were added that operate on IndexedSeqs. These have efficient random access and allow us to skip over items without examining each one, so sublinear runtime can be achieved.
- Loading branch information
Showing
8 changed files
with
721 additions
and
6 deletions.
There are no files selected for viewing
42 changes: 42 additions & 0 deletions
42
...-benchmark/src/main/scala/com/twitter/algebird/benchmark/ReservoirSamplingBenchmark.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
package com.twitter.algebird.benchmark | ||
|
||
import com.twitter.algebird.mutable.ReservoirSamplingToListAggregator | ||
import com.twitter.algebird.{Aggregator, Preparer} | ||
import org.openjdk.jmh.annotations.{Benchmark, Param, Scope, State} | ||
import org.openjdk.jmh.infra.Blackhole | ||
|
||
import scala.util.Random | ||
|
||
object ReservoirSamplingBenchmark { | ||
@State(Scope.Benchmark) | ||
class BenchmarkState { | ||
@Param(Array("100", "10000", "1000000")) | ||
var collectionSize: Int = 0 | ||
|
||
@Param(Array("0.001", "0.01", "0.1")) | ||
var sampleRate: Double = 0.0 | ||
|
||
def samples: Int = (sampleRate * collectionSize).ceil.toInt | ||
} | ||
|
||
val rng = new Random() | ||
implicit val randomSupplier: () => Random = () => rng | ||
} | ||
|
||
class ReservoirSamplingBenchmark { | ||
import ReservoirSamplingBenchmark._ | ||
|
||
private def prioQueueSampler[T](count: Int) = | ||
Preparer[T] | ||
.map(rng.nextDouble() -> _) | ||
.monoidAggregate(Aggregator.sortByTake(count)(_._1)) | ||
.andThenPresent(_.map(_._2)) | ||
|
||
@Benchmark | ||
def timeAlgorithmL(state: BenchmarkState, bh: Blackhole): Unit = | ||
bh.consume(new ReservoirSamplingToListAggregator[Int](state.samples).apply(0 until state.collectionSize)) | ||
|
||
@Benchmark | ||
def timePriorityQeueue(state: BenchmarkState, bh: Blackhole): Unit = | ||
bh.consume(prioQueueSampler(state.samples).apply(0 until state.collectionSize)) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
298 changes: 298 additions & 0 deletions
298
algebird-core/src/main/scala/com/twitter/algebird/mutable/ReservoirSampling.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,298 @@ | ||
package com.twitter.algebird.mutable | ||
|
||
import com.twitter.algebird.{Monoid, MonoidAggregator} | ||
|
||
import scala.collection.mutable | ||
import scala.util.Random | ||
|
||
/** | ||
* A reservoir of the currently sampled items. | ||
* | ||
* @param capacity | ||
* the reservoir capacity | ||
* @tparam T | ||
* the element type | ||
*/ | ||
sealed abstract class Reservoir[T](val capacity: Int) { | ||
require(capacity > 0, "reservoir size must be positive") | ||
|
||
def size: Int | ||
def isEmpty: Boolean = size == 0 | ||
def isFull: Boolean = size == capacity | ||
|
||
// When the reservoir is full, w is the threshold for accepting an element into the reservoir, and | ||
// the following invariant holds: The maximum score of the elements in the reservoir is w, | ||
// and the remaining elements are distributed as U[0, w]. | ||
// Scores are not kept explicitly, only their distribution is tracked and sampled from. | ||
// (w = 1 when the reservoir is not full.) | ||
def w: Double = 1 | ||
|
||
private[algebird] def toSeq: mutable.IndexedSeq[T] | ||
|
||
/** | ||
* Add an element to the reservoir. If the reservoir is full then the element will replace a random element | ||
* in the reservoir, and the threshold <pre>w</pre> is updated. | ||
* | ||
* When adding multiple elements, [[append]] should be used to take advantage of exponential jumps. | ||
* | ||
* @param x | ||
* the element to add | ||
* @param rng | ||
* the random source | ||
*/ | ||
private[algebird] def accept(x: T, rng: Random): Reservoir[T] | ||
|
||
// The number of items to skip before accepting the next item is geometrically distributed | ||
// with probability of success w / prior. The prior will be 1 when adding to a single reservoir, | ||
// but when merging reservoirs it will be the threshold of the reservoir being pulled from, | ||
// and in this case we require that w < prior. | ||
private def nextAcceptTime(rng: Random, prior: Double): Int = | ||
(-rng.self.nextExponential / Math.log1p(-w / prior)).toInt | ||
|
||
/** | ||
* Add multiple elements to the reservoir. | ||
* | ||
* @param xs | ||
* the elements to add | ||
* @param rng | ||
* the random source | ||
* @param prior | ||
* the threshold of the elements being added, such that the added element's value is distributed as | ||
* <pre>U[0, prior]</pre> | ||
* @return | ||
* this reservoir | ||
*/ | ||
def append(xs: TraversableOnce[T], rng: Random, prior: Double = 1.0): Reservoir[T] = | ||
xs match { | ||
case seq: IndexedSeq[T] => Reservoir.append(this, seq, rng, prior) | ||
case _ => Reservoir.append(this, xs, rng, prior) | ||
} | ||
} | ||
|
||
private[algebird] case class Empty[T](k: Int) extends Reservoir[T](k) { | ||
override val size: Int = 0 | ||
override val isEmpty: Boolean = true | ||
override val isFull: Boolean = false | ||
|
||
override def toSeq: mutable.IndexedSeq[T] = mutable.IndexedSeq() | ||
|
||
override def accept(x: T, rng: Random): Reservoir[T] = | ||
Singleton(k, x, if (capacity == 1) rng.nextDouble else 1) | ||
|
||
override def toString: String = s"Empty($capacity)" | ||
} | ||
|
||
// A reservoir with one element (but possibly higher capacity), optimizing the common case of sampling a | ||
// single element. | ||
private[algebird] case class Singleton[T](k: Int, x: T, w1: Double) extends Reservoir[T](k) { | ||
override val size: Int = 1 | ||
override val isEmpty: Boolean = false | ||
override val isFull: Boolean = capacity == 1 | ||
override val w: Double = w1 | ||
|
||
override def toSeq: mutable.IndexedSeq[T] = mutable.IndexedSeq(x) | ||
|
||
override def accept(y: T, rng: Random): Reservoir[T] = | ||
if (isFull) | ||
Singleton(k, y, w * rng.nextDouble) | ||
else | ||
new ArrayReservoir(k).accept(x, rng).accept(y, rng) | ||
|
||
override def toString: String = s"Singleton($capacity, $w, $x)" | ||
} | ||
|
||
// A reservoir backed by a mutable buffer - will mutate by aggregation! | ||
private[algebird] class ArrayReservoir[T](val k: Int) extends Reservoir[T](k) { | ||
private val reservoir: mutable.ArrayBuffer[T] = new mutable.ArrayBuffer(k) | ||
private var w1: Double = 1 | ||
private val kInv: Double = 1d / capacity | ||
|
||
override def size: Int = reservoir.size | ||
override def w: Double = w1 | ||
override def toSeq: mutable.IndexedSeq[T] = reservoir | ||
|
||
override def accept(x: T, rng: Random): Reservoir[T] = { | ||
if (isFull) { | ||
reservoir(rng.nextInt(capacity)) = x | ||
} else { | ||
reservoir.append(x) | ||
} | ||
if (isFull) { | ||
w1 *= Math.pow(rng.nextDouble, kInv) | ||
} | ||
this | ||
} | ||
|
||
override def toString: String = s"ArrayReservoir($capacity, $w, ${reservoir.toList})" | ||
} | ||
|
||
object Reservoir { | ||
def apply[T](capacity: Int): Reservoir[T] = Empty(capacity) | ||
|
||
private[algebird] def append[T]( | ||
self: Reservoir[T], | ||
xs: TraversableOnce[T], | ||
rng: Random, | ||
prior: Double | ||
): Reservoir[T] = { | ||
var res = self | ||
var skip = if (res.isFull) res.nextAcceptTime(rng, prior) else 0 | ||
for (x <- xs) { | ||
if (!res.isFull) { | ||
// keep adding until reservoir is full | ||
res = res.accept(x, rng) | ||
if (res.isFull) { | ||
skip = res.nextAcceptTime(rng, prior) | ||
} | ||
} else if (skip > 0) { | ||
skip -= 1 | ||
} else { | ||
res = res.accept(x, rng) | ||
skip = res.nextAcceptTime(rng, prior) | ||
} | ||
} | ||
res | ||
} | ||
|
||
/** | ||
* Add multiple elements to the reservoir. This overload is optimized for indexed sequences, where we can | ||
* skip over multiple indexes without accessing the elements. | ||
* | ||
* @param xs | ||
* the elements to add | ||
* @param rng | ||
* the random source | ||
* @param prior | ||
* the threshold of the elements being added, such that the added element's value is distributed as | ||
* <pre>U[0, prior]</pre> | ||
* @return | ||
* this reservoir | ||
*/ | ||
private[algebird] def append[T]( | ||
self: Reservoir[T], | ||
xs: IndexedSeq[T], | ||
rng: Random, | ||
prior: Double | ||
): Reservoir[T] = { | ||
var res = self | ||
var i = xs.size.min(res.capacity - res.size) | ||
for (j <- 0 until i) { | ||
res = res.accept(xs(j), rng) | ||
} | ||
|
||
val end = xs.size | ||
assert(res.isFull || i == end) | ||
while (i >= 0 && i < end) { | ||
i += res.nextAcceptTime(rng, prior) | ||
// the addition can overflow, in which case i < 0 | ||
if (i >= 0 && i < end) { | ||
// element enters the reservoir | ||
res = res.accept(xs(i), rng) | ||
i += 1 | ||
} | ||
} | ||
res | ||
} | ||
} | ||
|
||
/** | ||
* This is the "Algorithm L" reservoir sampling algorithm [1], with modifications to act as a monoid by | ||
* merging reservoirs. | ||
* | ||
* [1] Kim-Hung Li, "Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))", 1994 | ||
* | ||
* @tparam T | ||
* the item type | ||
*/ | ||
class ReservoirMonoid[T](val capacity: Int)(implicit val randomSupplier: () => Random) | ||
extends Monoid[Reservoir[T]] { | ||
|
||
override def zero: Reservoir[T] = Reservoir(capacity) | ||
override def isNonZero(r: Reservoir[T]): Boolean = !r.isEmpty | ||
|
||
/** | ||
* Merge two reservoirs. NOTE: This mutates one or both of the reservoirs. They should not be used after | ||
* this operation, except when using the return value for further aggregation. | ||
*/ | ||
override def plus(left: Reservoir[T], right: Reservoir[T]): Reservoir[T] = | ||
if (left.isEmpty) right | ||
else if (left.size + right.size <= left.capacity) { | ||
// the sum of the sizes is less than the reservoir size, so we can just merge | ||
left.append(right.toSeq, randomSupplier()) | ||
} else { | ||
val (s1, s2) = if (left.w < right.w) (left, right) else (right, left) | ||
val xs = s2.toSeq | ||
val rng = randomSupplier() | ||
if (s2.isFull) { | ||
assert(s1.isFull) | ||
// The highest score in s2 is w, and the other scores are distributed as U[0, w]. | ||
// Since s1.w < s2.w, we have to drop the single (sampled) element with the highest score | ||
// unconditionally. The other elements enter the reservoir with probability s1.w / s2.w. | ||
val i = rng.nextInt(xs.size) | ||
xs(i) = xs.head | ||
s1.append(xs.drop(1), rng, s2.w) | ||
} else { | ||
s1.append(xs, rng) | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* An aggregator that uses reservoir sampling to sample k elements from a stream of items. Because the | ||
* reservoir is mutable, it is a good idea to copy the result to an immutable view before using it, as is done | ||
* by [[ReservoirSamplingToListAggregator]]. | ||
* | ||
* @param capacity | ||
* the number of elements to sample | ||
* @param randomSupplier | ||
* the random generator | ||
* @tparam T | ||
* the item type | ||
* @tparam C | ||
* the result type | ||
*/ | ||
abstract class ReservoirSamplingAggregator[T, +C](capacity: Int)(implicit val randomSupplier: () => Random) | ||
extends MonoidAggregator[T, Reservoir[T], C] { | ||
override val monoid: ReservoirMonoid[T] = new ReservoirMonoid(capacity) | ||
override def prepare(x: T): Reservoir[T] = Reservoir(capacity).accept(x, randomSupplier()) | ||
|
||
override def apply(xs: TraversableOnce[T]): C = present(agg(xs)) | ||
|
||
override def applyOption(inputs: TraversableOnce[T]): Option[C] = | ||
if (inputs.isEmpty) None else Some(apply(inputs)) | ||
|
||
override def append(r: Reservoir[T], t: T): Reservoir[T] = r.append(Seq(t), randomSupplier()) | ||
|
||
override def appendAll(r: Reservoir[T], xs: TraversableOnce[T]): Reservoir[T] = | ||
r.append(xs, randomSupplier()) | ||
|
||
override def appendAll(xs: TraversableOnce[T]): Reservoir[T] = agg(xs) | ||
|
||
private def agg(xs: TraversableOnce[T]): Reservoir[T] = | ||
appendAll(monoid.zero, xs) | ||
} | ||
|
||
class ReservoirSamplingToListAggregator[T](capacity: Int)(implicit randomSupplier: () => Random) | ||
extends ReservoirSamplingAggregator[T, List[T]](capacity)(randomSupplier) { | ||
override def present(r: Reservoir[T]): List[T] = | ||
randomSupplier().shuffle(r.toSeq).toList | ||
|
||
override def andThenPresent[D](f: List[T] => D): MonoidAggregator[T, Reservoir[T], D] = | ||
new AndThenPresent(this, f) | ||
} | ||
|
||
/** | ||
* Monoid that implements [[andThenPresent]] without ruining the optimized behavior of the aggregator. | ||
*/ | ||
private[algebird] class AndThenPresent[-A, B, C, +D](val agg: MonoidAggregator[A, B, C], f: C => D) | ||
extends MonoidAggregator[A, B, D] { | ||
override val monoid: Monoid[B] = agg.monoid | ||
override def prepare(a: A): B = agg.prepare(a) | ||
override def present(b: B): D = f(agg.present(b)) | ||
|
||
override def apply(xs: TraversableOnce[A]): D = f(agg(xs)) | ||
override def applyOption(xs: TraversableOnce[A]): Option[D] = agg.applyOption(xs).map(f) | ||
override def append(b: B, a: A): B = agg.append(b, a) | ||
override def appendAll(b: B, as: TraversableOnce[A]): B = agg.appendAll(b, as) | ||
override def appendAll(as: TraversableOnce[A]): B = agg.appendAll(as) | ||
} |
Oops, something went wrong.