Skip to content

Commit

Permalink
numty:0.0.4
Browse files Browse the repository at this point in the history
Added n-dimensional arrays / matrix and their operations
Supported eq, apply funciton for all dimensions
 Added matrix multiplicaiton and transposition
  • Loading branch information
PabloRuizCuevas authored Oct 30, 2024
1 parent fb7e75e commit 8a4e8e3
Show file tree
Hide file tree
Showing 5 changed files with 550 additions and 0 deletions.
21 changes: 21 additions & 0 deletions packages/preview/numty/0.0.4/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2024 Pablo

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
106 changes: 106 additions & 0 deletions packages/preview/numty/0.0.4/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
## Numty

### Numeric Typst

A library for performing mathematical operations on n-dimensional matrices, vectors/arrays, and numbers in Typst, with support for broadcasting and handling NaN values. Numty’s broadcasting rules and API are inspired by NumPy.

```typ
#import "numty.typ" as nt
// Define vectors and matrices
#let a = (1, 2, 3)
#let b = 2
#let m = ((1, 2), (1, 3))
// Element-wise operations with broadcasting
#nt.mult(a, b) // Multiply vector 'a' by scalar 'b': (2, 4, 6)
#nt.add(a, a) // Add two vectors: (2, 4, 6)
#nt.add(2, a) // Add scalar '2' to each element of vector 'a': (3, 4, 5)
#nt.add(m, 1) // Add scalar '1' to each element of matrix 'm': ((2, 3), (2, 4))
// Dot product of vectors
#nt.dot(a, a) // Dot product of vector 'a' with itself: 14
// Handling NaN cases in mathematical functions
#calc.sin((3, 4)) // Fails, as Typst does not support vector operations directly
#nt.sin((3.4)) // Sine of each element in vector: (0.14411, 0.90929)
// Generate equally spaced values and vectorized functions
#let x = nt.linspace(0, 10, 3) // Generate 3 equally spaced values between 0 and 10: (0, 5, 10)
#let y = nt.sin(x) // Apply sine function to each element: (0, -0.95, -0.54)
// Logical operations
#nt.eq(a, b) // Compare each element in 'a' to 'b': (false, true, false)
#nt.any(nt.eq(a, b)) // Check if any element in 'a' equals 'b': true
#nt.all(nt.eq(a, b)) // Check if all elements in 'a' equal 'b': false
// Handling special cases like division by zero
#nt.div((1, 3), (2, 0)) // Element-wise division, with NaN for division by zero: (0.5, float.nan)
// Matrix operations (element-wise)
#nt.add(m, 1) // Add scalar to matrix elements: ((2, 3), (2, 4))
// matrix
#nt.transpose(m) // transposition
#nt.matmul(m,m) // matrix multipliation
```

Since vesion 0.0.4 n-dim matrices are supported as well in most operations.

## Supported Features:

### Logic Operations:
```typ
#import "numty.typ" as nt
#let a = (1,2,3)
#let b = 2
#nt.eq(a,b) // (false, true, false)
#nt.all(nt.eq(a,b)) // false
#nt.any(nt.eq(a,b)) // true
```

### Math operators:

All operators are element-wise,
traditional matrix multiplication is not yet supported.

```typ
#nt.add((0,1,3), 1) // (1,2,4)
#nt.mult((1,3),(2,2)) // (2,6)
#nt.div((1,3), (2,0)) // (0.5,float.nan)
```

### Algebra with Nan handling:

```typ
#nt.log((0,1,3)) // (float.nan, 0 , 0.47...)
#nt.sin((1,3)) // (0.84.. , 0.14...)
```

### Vector operations:

Basic vector operations

```typ
#nt.dot((1,2),(2,4)) // 9
#nt.normalize((1,4), l:1) // (1/5,4/5)
```

### Others:

Functions for creating equally spaced indexes in linear and logspace, usefull for log plots

```typ
#nt.linspace(0,10,3) // (0,5,10)
#nt.logspace(1,3,3)
#nt.geomspace(1,3,3)
```

### Printing

```typ
#nt.print((1,2),(4,2))) // to display in the pdf
```
204 changes: 204 additions & 0 deletions packages/preview/numty/0.0.4/lib.typ
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
// == types ==

#let arrarr(a,b) = (type(a) == array and type(b) == array)
#let arrflt(a,b) = (type(a) == array and type(b) != array)
#let fltarr(a,b) = (type(a) != array and type(b) == array)
#let fltflt(a,b) = (type(a) != array and type(b) != array)
#let is-arr(a) = (type(a) == array)
#let is-mat(m) = (is-arr(m) and is-arr(m.at(0)))
#let matmat(m,n) = is-mat(m) and is-mat(n)
#let matflt(m,n) = is-mat(m) and type(n) != array
#let fltmat(m,n) = is-mat(n) and type(m) != array

// == boolean ==

#let isna(v) = {
if is-arr(v){
v.map(i => if (type(i)==float){i.is-nan()} else {false})
}
else{
if (type(v)==float){v.is-nan()} else {false}
}
}

#let all(v) ={
if is-arr(v){
v.flatten().all(a => a == true or a ==1)
}
else{
v == true or v == 1
}
}

#let op(a,b, fun) ={
// generic operator with broacasting
if matmat(a,b) {
a.zip(b).map(((a,b)) => op(a,b, fun))
}
else if matflt(a,b){ // supports n-dim matrices
a.map(v=> op(v,b, fun))
}
else if fltmat(a,b){
b.map(v=> op(a,v, fun))
}
else if arrarr(a,b) {
a.zip(b).map(((i,j)) => fun(i,j))
}
else if arrflt(a,b) {
a.map(a => fun(a,b))
}
else if fltarr(a,b) {
b.map(i => fun(a,i))
}
else {
fun(a,b)
}
}

#let _eq(i,j, equal-nan) ={
i==j or (all(isna((i,j))) and equal-nan)
}

#let eq(u,v, equal-nan: false) = {
// Checks for equality element wise
// eq((1,2,3), (1,2,3)) = (true, true, true)
// eq((1,2,3), 1) = (true, false, false)
let _eqf(i,j)={_eq(i,j, equal-nan)}
op(u,v, _eqf)
}


#let any(v) ={
// check if any item is true after iterating everything
if is-arr(v){
v.flatten().any(a => a == true or a ==1)
}
else{
v == true or v == 1
}
}

#let all-eq(u,v) = all(eq(u,v))

#let apply(a, fun) ={
// vectorize
// consider returnding a function of a instead?
if is-arr(a){ //recursion exploted for n-dim
a.map(v=>apply(v, fun))
}
else{
fun(a)
}
}

#let abs(a)= apply(a, calc.abs)

// == Operators ==

#let _add(a,b)=(a + b)
#let _sub(a,b)=(a - b)
#let _mul(a,b)=(a * b)
#let _div(a,b)= if (b!=0) {a/b} else {float.nan}



#let add(u,v) = op(u,v, _add)
#let sub(u, v) = op(u,v, _sub)
#let mult(u, v) = op(u,v, _mul)
#let div(u, v) = op(u,v, _div)
#let pow(u, v) = op(u,v, calc.pow)

// == vectorial ==

#let normalize(a, l:2) = {
// normalize a vector, defaults to L2 normalization
let aux = pow(pow(abs(a),l).sum(),1/l)
a.map(b => b/aux)
}

// dot product

#let dot(a,b) = mult(a,b).sum()

// == Algebra, trigonometry ==


#let sin(a) = apply(a,calc.sin)
#let cos(a) = apply(a,calc.cos)
#let tan(a) = apply(a,calc.tan)
#let log(a) = apply(a, j => if (j>0) {calc.log(j)} else {float.nan} )

// matrix

#let transpose(m) = {
// Get dimensions of the matrix
let rows = m.len()
let cols = m.at(0).len()
range(0, cols).map(c => range(0, rows).map(r => m.at(r).at(c)))
}

#let matmul(a,b) = {
let bt = transpose(b)
a.map(a_row => bt.map(b_col => dot(a_row,b_col)))
}

// others:

#let linspace = (start, stop, num) => {
// mimics numpy linspace
let step = (stop - start) / (num - 1)
range(0, num).map(v => start + v * step)
}

#let logspace = (start, stop, num, base: 10) => {
// mimics numpy logspace
let step = (stop - start) / (num - 1)
range(0, num).map(v => calc.pow(base, (start + v * step)))
}

#let geomspace = (start, stop, num) => {
// mimics numpy geomspace
let step = calc.pow( stop / start, 1 / (num - 1))
range(0, num).map(v => start * calc.pow(step,v))
}

#let to-str(a) = {
if (type(a) == bool){
if(a){
"value1"
}
else {
"value2"
}
}
else{
str(a)
}
}

#let print(M) = {

Check warning on line 179 in packages/preview/numty/0.0.4/lib.typ

View check run for this annotation

Typst package check / @preview/numty:0.0.4

packages/preview/numty/0.0.4/lib.typ#L179

This argument seems to be part of public function. It is recommended to use kebab-case names.
if is-mat(M) {
eval("$ mat(" + M.map(v => v.map(j=>to-str(j)).join(",")).join(";")+ ") $")
}
else if is-arr(M){
eval("$ vec(" + M.map(v => str(v)).join(",")+ ") $")
}
else{
eval(" $"+str(M)+"$ ")
}
}



#let p(M) = {

Check warning on line 193 in packages/preview/numty/0.0.4/lib.typ

View check run for this annotation

Typst package check / @preview/numty:0.0.4

packages/preview/numty/0.0.4/lib.typ#L193

This argument seems to be part of public function. It is recommended to use kebab-case names.
let scope = (value1: "true", value2: "false")
if is-mat(M) {
eval("$mat(" + M.map(v => v.map(j=>to-str(j)).join(",")).join(";")+ ")$", scope: scope)
}
else if is-arr(M){
eval("$vec(" + M.map(v => str(v)).join(",")+ ")$")
}
else{
eval("$"+str(M)+"$")
}
}
Loading

0 comments on commit 8a4e8e3

Please sign in to comment.