Skip to content

Commit

Permalink
Address comments
Browse files Browse the repository at this point in the history
  • Loading branch information
olegkkruglov committed Sep 3, 2024
1 parent 7625457 commit e5458b3
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 10 deletions.
4 changes: 2 additions & 2 deletions sklearnex/covariance/tests/test_incremental_covariance.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@
@pytest.mark.parametrize("assume_centered", [True, False])
def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype, assume_centered):
is_gpu = queue is not None and queue.sycl_device.is_gpu
if assume_centered and is_gpu and not daal_check_version((2024, "P", 800)):
if assume_centered and is_gpu and not daal_check_version((2025, "P", 0)):
pytest.skip(
"Due to a bug on oneDAL side, means are not set to zero when assume_centered=True"
)
Expand Down Expand Up @@ -150,7 +150,7 @@ def test_sklearnex_fit_on_random_data(
dataframe, queue, num_batches, row_count, column_count, dtype, assume_centered
):
is_gpu = queue is not None and queue.sycl_device.is_gpu
if assume_centered and is_gpu and not daal_check_version((2024, "P", 800)):
if assume_centered and is_gpu and not daal_check_version((2025, "P", 0)):
pytest.skip(
"Due to a bug on oneDAL side, means are not set to zero when assume_centered=True"
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,9 @@
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
)
@pytest.mark.parametrize("assume_centered", [True, False])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.mpi
def test_incremental_covariance_fit_spmd_gold(dataframe, queue, assume_centered):
def test_incremental_covariance_fit_spmd_gold(dataframe, queue, assume_centered, dtype):
# Import spmd and batch algo
from sklearnex.covariance import IncrementalEmpiricalCovariance
from sklearnex.spmd.covariance import (
Expand All @@ -57,7 +58,8 @@ def test_incremental_covariance_fit_spmd_gold(dataframe, queue, assume_centered)
[0.0, 5.0, 32.0],
[0.0, 6.0, 64.0],
[0.0, 7.0, 128.0],
]
],
dtype=dtype,
)

dpt_data = _convert_to_dataframe(data, sycl_queue=queue, target_df=dataframe)
Expand Down Expand Up @@ -88,9 +90,10 @@ def test_incremental_covariance_fit_spmd_gold(dataframe, queue, assume_centered)
)
@pytest.mark.parametrize("num_blocks", [1, 2])
@pytest.mark.parametrize("assume_centered", [True, False])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.mpi
def test_incremental_covariance_partial_fit_spmd_gold(
dataframe, queue, num_blocks, assume_centered
dataframe, queue, num_blocks, assume_centered, dtype
):
# Import spmd and batch algo
from sklearnex.covariance import IncrementalEmpiricalCovariance
Expand All @@ -109,7 +112,8 @@ def test_incremental_covariance_partial_fit_spmd_gold(
[0.0, 5.0, 32.0],
[0.0, 6.0, 64.0],
[0.0, 7.0, 128.0],
]
],
dtype=dtype,
)

dpt_data = _convert_to_dataframe(data, sycl_queue=queue, target_df=dataframe)
Expand Down Expand Up @@ -140,13 +144,14 @@ def test_incremental_covariance_partial_fit_spmd_gold(
@pytest.mark.parametrize("n_features", [10, 100])
@pytest.mark.parametrize("num_blocks", [1, 2])
@pytest.mark.parametrize("assume_centered", [True, False])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize(
"dataframe,queue",
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
)
@pytest.mark.mpi
def test_incremental_covariance_partial_fit_spmd_synthetic(
n_samples, n_features, num_blocks, assume_centered, dataframe, queue
n_samples, n_features, num_blocks, assume_centered, dataframe, queue, dtype
):
# Import spmd and batch algo
from sklearnex.covariance import IncrementalEmpiricalCovariance
Expand All @@ -155,7 +160,7 @@ def test_incremental_covariance_partial_fit_spmd_synthetic(
)

# Generate data and process into dpt
data = _generate_statistic_data(n_samples, n_features)
data = _generate_statistic_data(n_samples, n_features, dtype=dtype)

dpt_data = _convert_to_dataframe(data, sycl_queue=queue, target_df=dataframe)

Expand All @@ -173,5 +178,7 @@ def test_incremental_covariance_partial_fit_spmd_synthetic(

inccov.fit(dpt_data)

assert_allclose(inccov_spmd.covariance_, inccov.covariance_)
assert_allclose(inccov_spmd.location_, inccov.location_)
tol = 1e-7

assert_allclose(inccov_spmd.covariance_, inccov.covariance_, atol=tol)
assert_allclose(inccov_spmd.location_, inccov.location_, atol=tol)

0 comments on commit e5458b3

Please sign in to comment.