Skip to content

uyongw/menoh

 
 

Repository files navigation

Menoh

travis

Menoh is DNN inference library with C API.

Menoh is released under MIT License.

Document

This codebase contains C API and C++ API.

For Windows users, prebuild libraries are available and Nuget package is available.

See also

Goal

  • DNN Inference with CPU
  • ONNX support
  • Easy to use.

Requirements

  • MKL-DNN Library (0.14 or later)
  • ProtocolBuffers (3.5.1 is checked)

Build

Execute below commands in root directory.

python retrieve_data.py
mkdir build && cd build
cmake ..
make

Installation

Execute below command in build directory created at Build section.

make install

Run VGG16 example

Execute below command in root directory.

./example/vgg16_example_in_cpp

Result is below

vgg16 example
-22.3708 -34.4082 -10.218 24.2962 -0.252342 -8.004 -27.0804 -23.0728 -7.05607 16.1343
top 5 categories are
8 0.96132 n01514859 hen
7 0.0369939 n01514668 cock
86 0.00122795 n01807496 partridge
82 0.000225824 n01797886 ruffed grouse, partridge, Bonasa umbellus
97 3.83677e-05 n01847000 drake

Please give --help option for details

./example/vgg16_example --help

Run test

Setup chainer

Then, execute below commands in root directory.

python gen_test_data.py
cd build
cmake -DENABLE_TEST=ON ..
make
./test/menoh_test.out

Current supported operators

Activation functions

  • Elu
  • LeakyRelu
  • Relu
  • Softmax
  • Tanh

Array manipulations

  • Concat

Neural network connections

  • Conv
  • ConvTranspose
  • FC

Mathematical functions

  • Abs
  • Add
  • Sqrt

Normalization functions

  • BatchNormalization

Spatial pooling

  • AveragePool
  • GlobalAveragePool
  • GlobalMaxPool
  • MaxPool

License

Menoh is released under MIT License. Please see the LICENSE file for details.

Note: retrieve_data.py downloads data/VGG16.onnx. data/VGG16.onnx is generated by onnx-chainer from pre-trained model which is uploaded at http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel

That pre-trained model is released under Creative Commons Attribution License.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 95.9%
  • Python 2.0%
  • C 1.5%
  • Other 0.6%