Skip to content

A lightweight hyperparameters class for machine learning projects that takes away all the pain of argparse

Notifications You must be signed in to change notification settings

vmasrani/hypers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Hypers: Simplified Hyperparameter Management

Hypers is a lightweight Python class designed to simplify the management of machine learning hyperparameters. It abstracts away the complexities of using argparse, providing a more intuitive and user-friendly interface.

Features

  • Automatic command line access: Hypers automatically integrates with argparse, inferring types and providing command line access to your hyperparameters.
  • Pretty printing: Hypers automatically prints your hyperparameters in a color-coded format upon instantiation, making it easy to see the current configuration at a glance.
  • Config file support: You can define additional configuration files and pass them as command line arguments.
  • Conversion to dictionary: Hypers can convert your hyperparameters to a dictionary, making it easy to upload them to platforms like Weights & Biases.
  • Minimalistic and extendable: Hypers is less than 150 lines of code and uses only Python Standard Library packages, making it easy to understand, modify, and extend.

Usage

From argparse to Hypers

Hypers turns this:

import argparse

parser = argparse.ArgumentParser(description='Demo script for defining random hyperparameters')

parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate for the model')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training')
parser.add_argument('--use_dropout', action='store_true', help='Whether to use dropout in the model')
parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd', 'rmsprop'], help='Optimizer for training')
parser.add_argument('--hidden_layers', type=int, nargs='+', default=[256, 128], help='Sizes of hidden layers')
parser.add_argument('--tags', type=str, nargs='+', default=['cat', 'dog'], help='Sizes of hidden layers')

args = parser.parse_args()
lr = args.learning_rate

print(args)
# prints:
# Namespace(batch_size=32, hidden_layers=[256, 128], learning_rate=0.01, optimizer='adam', tags=['cat', 'dog'], use_dropout=False)

Into this:

from hypers import Hypers

class Args(Hypers):
    learning_rate = 0.01 # types automatically inferred
    batch_size = 32
    use_dropout = True
    optimizer = 'adam'
    hidden_layers = [256, 128] # types inferred in lists too
    tags = ['cat','dog'] # types inferred in lists too

args = Args()
config = args.to_dict() # to upload to wandb
lr = args.learning_rate # maintains dot access

# auto-prints upon instantiation  
# ----------------------------------------HyperParams----------------------------------------
#                          (color code: default, config, command_line)
# batch_size: 32
# hidden_layers: [256, 128]
# learning_rate: 0.01
# optimizer: adam
# tags: ['cat', 'dog']
# use_dropout: True
# -------------------------------------------------------------------------------------------

Using Config Files

You can define additional configuration files and pass them as command line arguments:

python main.py config/default_params.py config/default_params2.py --tags=cat,dog,fish --layers=2,3,4,5 --use_dropout=true

Installation

Hypers is a standalone Python file with no additional dependencies. Just copy the hypers.py file it into your project and import it. Protip: Rather than copying hypers.py into every new project, create a hidden directory in home (i.e. ~/.python) and set your PYTHONPATH in your bashrc via export PYTHONPATH=~/.python:$PYTHONPATH.

Then you can import hypers from Hypers in all your projects. Super handy to prevent the case where you have K slightly modified copies of hypers.py and you've tweaked a few of them.

See example and intended usage in main.py.

Contributing

Contributions to Hypers are welcome! Please submit a pull request or open an issue on GitHub.

About

A lightweight hyperparameters class for machine learning projects that takes away all the pain of argparse

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages