Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf(reactivity): ports alien-signals 0.4.4 #12349

Merged
merged 89 commits into from
Dec 2, 2024

Conversation

johnsoncodehk
Copy link
Member

@johnsoncodehk johnsoncodehk commented Nov 9, 2024

alien-signals(https://github.com/stackblitz/alien-signals) is a research-oriented signal library rewritten based on Vue 3.4's reactivity system. It sets several constraints to ensure the high-performance implementation of a reactivity system. (Currently, it is the fastest implementation among all signal libraries)

This PR ports the https://github.com/stackblitz/alien-signals/blob/master/src/system.ts code to https://github.com/vuejs/core/blob/main/packages/reactivity/src/effect.ts to leverage all the optimizations discovered by alien-signals.

Benefits

  • Lower memory usage: Memory usage is reduced by ~13% (2.3MB -> 2.0MB) when creating a large number of ref, computed, and effect instances.
  • Higher performance: Various performance tests now generally yield better results, especially in scenarios where a large number of computeds are read after changing a ref. Vue 3.5 had significant performance drawbacks in this case (a characteristic of pull-model reactivity systems, it can be reproduced in https://github.com/transitive-bullshit/js-reactivity-benchmark), and the current implementation resolves this issue, achieving over 30x performance improvement (proportional to scale).
  • Better code abstraction: The previous scheduling logic had coupling with external implementations (such as Dep cleanup, debug events, recurse effect handling). The current implementation eliminates these couplings.

Benchmark Results

computed

     name                                                                    hz     min     max    mean     p75     p99    p995    p999     rme  samples
   · create computed                                               6,111,709.97  0.0000  0.3307  0.0002  0.0002  0.0002  0.0002  0.0003  ±0.53%  3055856  [1.28x] ⇑
     create computed                                               4,790,560.55  0.0001  2.8602  0.0002  0.0002  0.0003  0.0003  0.0005  ±1.19%  2395281  (baseline)
   · write ref, don't read computed (without effect)               3,725,946.87  0.0002  0.1777  0.0003  0.0003  0.0003  0.0003  0.0004  ±0.16%  1862974  [1.19x] ⇑
     write ref, don't read computed (without effect)               3,138,437.74  0.0002  1.4873  0.0003  0.0003  0.0004  0.0004  0.0005  ±1.21%  1569219  (baseline)
   · write ref, don't read computed (with effect)                  1,629,737.97  0.0005  0.1867  0.0006  0.0006  0.0007  0.0007  0.0008  ±0.11%   814869  [1.20x] ⇑
     write ref, don't read computed (with effect)                  1,362,345.64  0.0006  0.1455  0.0007  0.0008  0.0008  0.0008  0.0010  ±0.13%   681173  (baseline)
   · write ref, read computed (without effect)                     1,961,824.76  0.0004  0.1808  0.0005  0.0005  0.0005  0.0006  0.0007  ±0.12%   980913  [1.06x] ⇑
     write ref, read computed (without effect)                     1,848,260.85  0.0004  0.1488  0.0005  0.0005  0.0006  0.0006  0.0007  ±0.13%   924131  (baseline)
   · write ref, read computed (with effect)                        1,475,801.43  0.0005  0.2211  0.0007  0.0007  0.0008  0.0008  0.0010  ±0.12%   737901  [1.14x] ⇑
     write ref, read computed (with effect)                        1,296,434.21  0.0007  0.2508  0.0008  0.0008  0.0008  0.0009  0.0011  ±0.16%   648218  (baseline)
   · write ref, don't read 1000 computeds (without effect)         3,300,382.44  0.0002  0.1930  0.0003  0.0003  0.0003  0.0004  0.0004  ±0.14%  1650192  [1.03x] ⇑
     write ref, don't read 1000 computeds (without effect)         3,189,502.88  0.0002  0.1763  0.0003  0.0003  0.0003  0.0004  0.0005  ±0.14%  1594752  (baseline)
   · write ref, don't read 1000 computeds (with multiple effects)      3,222.67  0.3063  0.5532  0.3103  0.3108  0.3488  0.3917  0.5250  ±0.19%     1612  [1.38x] ⇑
     write ref, don't read 1000 computeds (with multiple effects)      2,329.65  0.4206  0.6286  0.4292  0.4292  0.4997  0.5215  0.5671  ±0.19%     1165  (baseline)
   · write ref, don't read 1000 computeds (with single effect)         3,734.95  0.2648  0.3821  0.2677  0.2683  0.2855  0.2986  0.3510  ±0.09%     1868  [1.71x] ⇑
     write ref, don't read 1000 computeds (with single effect)         2,186.19  0.4434  0.6528  0.4574  0.4565  0.5061  0.5221  0.5846  ±0.16%     1094  (baseline)
   · write ref, read 1000 computeds (no effect)                        4,694.97  0.2105  0.3849  0.2130  0.2142  0.2301  0.2382  0.3271  ±0.12%     2348  [1.26x] ⇑
     write ref, read 1000 computeds (no effect)                        3,718.71  0.2292  9.4632  0.2689  0.2329  1.0790  2.5163  6.3315  ±5.98%     1860  (baseline)
   · write ref, read 1000 computeds (with multiple effects)            2,845.64  0.3453  0.6213  0.3514  0.3512  0.4014  0.4358  0.5546  ±0.21%     1423  [1.33x] ⇑
     write ref, read 1000 computeds (with multiple effects)            2,142.70  0.4569  0.7351  0.4667  0.4664  0.5183  0.5565  0.6951  ±0.22%     1072  (baseline)
   · write ref, read 1000 computeds (with single effect)               2,265.62  0.4338  0.9382  0.4414  0.4392  0.5991  0.6087  0.6304  ±0.36%     1133  [1.48x] ⇑
     write ref, read 1000 computeds (with single effect)               1,529.78  0.6415  0.8937  0.6537  0.6526  0.7195  0.7378  0.8937  ±0.18%      765  (baseline)
   · 1000 refs, read 1 computed (without effect)                      19,686.23  0.0490  0.1665  0.0508  0.0495  0.0595  0.0631  0.0935  ±0.16%     9844  [3.41x] ⇑
     1000 refs, read 1 computed (without effect)                       5,775.97  0.1611  0.3445  0.1731  0.1746  0.2057  0.2170  0.2689  ±0.18%     2888  (baseline)
   · 1000 refs, read 1 computed (with effect)                         22,764.26  0.0427  0.1713  0.0439  0.0430  0.0534  0.0585  0.0983  ±0.16%    11383  [3.63x] ⇑
     1000 refs, read 1 computed (with effect)                          6,268.22  0.1492  0.3157  0.1595  0.1620  0.1907  0.2024  0.2408  ±0.18%     3135  (baseline)

effect

     name                                                       hz      min      max     mean      p75      p99     p995     p999     rme  samples
   · single ref invoke                                2,422,374.37   0.0003   0.1300   0.0004   0.0004   0.0005   0.0005   0.0006  ±0.12%  1211188  [1.08x] ⇑
     single ref invoke                                2,253,296.36   0.0003   0.1473   0.0004   0.0005   0.0005   0.0005   0.0006  ±0.15%  1126649  (baseline)
   · create an effect that tracks 1 refs              3,041,716.41   0.0002   0.2316   0.0003   0.0003   0.0004   0.0005   0.0006  ±0.39%  1520859  [1.32x] ⇑
     create an effect that tracks 1 refs              2,305,307.54   0.0003   0.1655   0.0004   0.0004   0.0005   0.0005   0.0008  ±0.32%  1152654  (baseline)
   · create an effect that tracks 10 refs               477,709.54   0.0019   0.2655   0.0021   0.0021   0.0023   0.0025   0.0036  ±0.38%   238855  [1.57x] ⇑
     create an effect that tracks 10 refs               303,939.27   0.0031   0.2318   0.0033   0.0032   0.0035   0.0037   0.0183  ±0.34%   151970  (baseline)
   · create an effect that tracks 100 refs               51,529.46   0.0188   0.2940   0.0194   0.0190   0.0267   0.0342   0.1052  ±0.38%    25765  [1.62x] ⇑
     create an effect that tracks 100 refs               31,753.65   0.0306   0.2372   0.0315   0.0309   0.0464   0.0528   0.1848  ±0.34%    15877  (baseline)
   · create an effect that tracks 1000 refs               5,185.44   0.1884   0.4357   0.1928   0.1896   0.3253   0.3712   0.4210  ±0.41%     2593  [1.65x] ⇑
     create an effect that tracks 1000 refs               3,135.25   0.3067   1.2006   0.3190   0.3107   0.5374   0.7059   1.1851  ±0.83%     1568  (baseline)
   · create and stop an effect that tracks 1 refs     2,643,923.29   0.0003   0.2466   0.0004   0.0004   0.0005   0.0006   0.0008  ±0.40%  1321998  [1.25x] ⇑
     create and stop an effect that tracks 1 refs     2,108,885.94   0.0003   0.1770   0.0005   0.0005   0.0005   0.0006   0.0008  ±0.35%  1054443  (baseline)
   · create and stop an effect that tracks 10 refs      434,027.52   0.0022   0.2420   0.0023   0.0023   0.0024   0.0026   0.0038  ±0.28%   217014  [1.59x] ⇑
     create and stop an effect that tracks 10 refs      272,235.14   0.0035   0.3079   0.0037   0.0036   0.0040   0.0041   0.0193  ±0.36%   136118  (baseline)
   · create and stop an effect that tracks 100 refs      46,683.59   0.0209   0.2881   0.0214   0.0212   0.0246   0.0315   0.0809  ±0.33%    23342  [1.66x] ⇑
     create and stop an effect that tracks 100 refs      28,075.59   0.0343   3.7334   0.0356   0.0348   0.0508   0.0602   0.1706  ±1.48%    14038  (baseline)
   · create and stop an effect that tracks 1000 refs      4,674.21   0.2099   0.5031   0.2139   0.2114   0.2932   0.3995   0.4782  ±0.38%     2338  [1.65x] ⇑
     create and stop an effect that tracks 1000 refs      2,829.92   0.3445   0.5768   0.3534   0.3499   0.4938   0.5118   0.5708  ±0.34%     1415  (baseline)
   · 1 effect, mutate 10 refs                           131,308.76   0.0074   0.2790   0.0076   0.0076   0.0079   0.0081   0.0197  ±0.15%    65655  [2.37x] ⇑
     1 effect, mutate 10 refs                            55,475.14   0.0177   0.1079   0.0180   0.0179   0.0215   0.0318   0.0527  ±0.14%    27738  (baseline)
   · 1 effect, mutate 100 refs                            2,163.50   0.4568   0.8003   0.4622   0.4609   0.5471   0.6069   0.7550  ±0.26%     1082  [3.27x] ⇑
     1 effect, mutate 100 refs                              660.75   1.4944   1.8873   1.5134   1.5197   1.6387   1.7310   1.8873  ±0.24%      331  (baseline)
   · 1 effect, mutate 1000 refs                            23.1906  42.8559  43.6757  43.1209  43.1839  43.6757  43.6757  43.6757  ±0.39%       12  [3.47x] ⇑
     1 effect, mutate 1000 refs                             6.6868   149.16   149.78   149.55   149.71   149.78   149.78   149.78  ±0.10%       10  (baseline)
   · 10 refs branch toggle                            1,186,713.31   0.0004   6.0071   0.0008   0.0010   0.0011   0.0014   0.0015  ±4.92%   593357  [1.75x] ⇑
     10 refs branch toggle                              678,007.23   0.0007   0.2123   0.0015   0.0022   0.0022   0.0023   0.0049  ±0.23%   339004  (baseline)
   · 100 refs branch toggle                             303,335.02   0.0009   0.1054   0.0033   0.0055   0.0057   0.0057   0.0110  ±0.37%   151669  [3.03x] ⇑
     100 refs branch toggle                              99,958.91   0.0029   1.4980   0.0100   0.0166   0.0173   0.0242   0.0396  ±0.88%    49981  (baseline)
   · 1000 refs branch toggle                             33,959.34   0.0069   0.1933   0.0294   0.0513   0.0547   0.0595   0.0819  ±1.14%    16981  [3.26x] ⇑
     1000 refs branch toggle                             10,416.41   0.0265   0.4061   0.0960   0.1623   0.1861   0.2043   0.3517  ±1.97%     5209  (baseline)
   · 1 ref invoking 10 effects                          946,141.80   0.0009   0.0576   0.0011   0.0011   0.0011   0.0012   0.0014  ±0.08%   473071  [1.53x] ⇑
     1 ref invoking 10 effects                          617,154.17   0.0013   2.1592   0.0016   0.0014   0.0020   0.0020   0.0193  ±2.15%   308578  (baseline)
   · 1 ref invoking 100 effects                         137,515.93   0.0069   0.1466   0.0073   0.0073   0.0075   0.0078   0.0228  ±0.13%    68758  [1.51x] ⇑
     1 ref invoking 100 effects                          91,193.89   0.0105   0.2659   0.0110   0.0110   0.0114   0.0187   0.0313  ±0.16%    45597  (baseline)
   · 1 ref invoking 1000 effects                         13,791.02   0.0704   0.1650   0.0725   0.0727   0.0858   0.0947   0.1325  ±0.13%     6896  [1.48x] ⇑
     1 ref invoking 1000 effects                          9,339.78   0.1047   0.1980   0.1071   0.1069   0.1265   0.1379   0.1740  ±0.13%     4670  (baseline)

ref

     name                       hz     min     max    mean     p75     p99    p995    p999     rme  samples
   · create ref       4,648,340.74  0.0001  1.8655  0.0002  0.0002  0.0003  0.0003  0.0004  ±0.89%  2324171  [1.09x] ⇑
     create ref       4,261,204.35  0.0001  0.1899  0.0002  0.0003  0.0003  0.0003  0.0005  ±0.15%  2130603  (baseline)
   · write ref        3,817,925.50  0.0002  0.1143  0.0003  0.0003  0.0003  0.0003  0.0004  ±0.08%  1908963  [1.18x] ⇑
     write ref        3,248,551.04  0.0002  0.2231  0.0003  0.0003  0.0003  0.0004  0.0005  ±0.16%  1624276  (baseline)
   · read ref        11,485,907.61  0.0000  0.1316  0.0001  0.0001  0.0001  0.0001  0.0002  ±0.13%  5742954  [1.02x] ⇑
     read ref        11,264,635.57  0.0000  0.1458  0.0001  0.0001  0.0001  0.0001  0.0002  ±0.18%  5632318  (baseline)
   · write/read ref   3,576,071.66  0.0002  0.2868  0.0003  0.0003  0.0003  0.0003  0.0004  ±0.12%  1788036  [1.33x] ⇑
     write/read ref   2,694,391.71  0.0002  1.0205  0.0004  0.0004  0.0004  0.0005  0.0008  ±0.94%  1347196  (baseline)

Potential Improvements

  • Merging dirtyLevel, canPropagate, pauseLevel, and allowRecurse into one attribute should further reduce memory usage. Reaching the lowest memory usage is not the purpose of this PR, so we will not implement it here currently. Completed when update to alien-signals 0.4.4

Copy link

github-actions bot commented Nov 9, 2024

Size Report

Bundles

File Size Gzip Brotli
runtime-dom.global.prod.js 101 kB (+729 B) 38.1 kB (+119 B) 34.3 kB (+80 B)
vue.global.prod.js 159 kB (+726 B) 57.9 kB (+119 B) 51.6 kB (+171 B)

Usages

Name Size Gzip Brotli
createApp (CAPI only) 47.2 kB (+79 B) 18.4 kB (+106 B) 16.8 kB (+61 B)
createApp 55.7 kB (+499 B) 21.5 kB (+155 B) 19.6 kB (+127 B)
createSSRApp 59.8 kB (+499 B) 23.2 kB (+158 B) 21.1 kB (+133 B)
defineCustomElement 60.6 kB (+497 B) 23.1 kB (+157 B) 21 kB (+134 B)
overall 69.8 kB (+670 B) 26.6 kB (+117 B) 24.1 kB (+42 B)

Copy link

pkg-pr-new bot commented Nov 9, 2024

Open in Stackblitz

@vue/compiler-core

npm i https://pkg.pr.new/@vue/compiler-core@12349

@vue/compiler-sfc

npm i https://pkg.pr.new/@vue/compiler-sfc@12349

@vue/compiler-dom

npm i https://pkg.pr.new/@vue/compiler-dom@12349

@vue/compiler-ssr

npm i https://pkg.pr.new/@vue/compiler-ssr@12349

@vue/runtime-core

npm i https://pkg.pr.new/@vue/runtime-core@12349

@vue/reactivity

npm i https://pkg.pr.new/@vue/reactivity@12349

@vue/runtime-dom

npm i https://pkg.pr.new/@vue/runtime-dom@12349

@vue/server-renderer

npm i https://pkg.pr.new/@vue/server-renderer@12349

@vue/shared

npm i https://pkg.pr.new/@vue/shared@12349

vue

npm i https://pkg.pr.new/vue@12349

@vue/compat

npm i https://pkg.pr.new/@vue/compat@12349

commit: cab5ecf

Copy link

netlify bot commented Nov 10, 2024

Deploy Preview for vue-sfc-playground failed. Why did it fail? →

Name Link
🔨 Latest commit dffd270
🔍 Latest deploy log https://app.netlify.com/sites/vue-sfc-playground/deploys/6730c65868d1a20008fed7ba

@johnsoncodehk
Copy link
Member Author

/ecosystem-ci run

@transitive-bullshit
Copy link

Pretty impressive from my testing thanks to @johnsoncodehk et al 🔥

Average benchmark results across frameworks (lower times are better)

These results were last updated November 22 2024 on an M3 Macbook Pro using Node.js v22.10.0.

@johnsoncodehk
Copy link
Member Author

/ecosystem-ci run

@johnsoncodehk johnsoncodehk changed the title perf(reactivity): ports alien-signals perf(reactivity): ports alien-signals 0.4.4 Nov 28, 2024
@vue-bot
Copy link
Contributor

vue-bot commented Nov 28, 2024

📝 Ran ecosystem CI: Open

suite result latest scheduled
language-tools success success
nuxt success success
pinia failure success
primevue success success
quasar success success
radix-vue success success
router success success
test-utils success success
vant success success
vite-plugin-vue success success
vitepress success success
vue-i18n success success
vue-macros success success
vuetify success success
vueuse success failure
vue-simple-compiler success success

This reverts commit 69468ca.
@johnsoncodehk
Copy link
Member Author

/ecosystem-ci run

@vue-bot
Copy link
Contributor

vue-bot commented Nov 28, 2024

📝 Ran ecosystem CI: Open

suite result latest scheduled
language-tools failure success
nuxt ⏹️ cancelled success
pinia failure success
primevue success success
quasar success success
radix-vue success success
router success success
test-utils success success
vant success success
vite-plugin-vue success success
vitepress success success
vue-i18n ⏹️ cancelled success
vue-macros failure success
vuetify ⏹️ cancelled success
vueuse success failure
vue-simple-compiler success success

@johnsoncodehk
Copy link
Member Author

/ecosystem-ci run

@vue-bot
Copy link
Contributor

vue-bot commented Nov 28, 2024

📝 Ran ecosystem CI: Open

suite result latest scheduled
language-tools success success
nuxt success success
pinia success success
primevue success success
quasar success success
radix-vue success success
router success success
test-utils success success
vant success success
vite-plugin-vue success success
vitepress success success
vue-i18n success success
vue-macros success success
vuetify success success
vueuse success failure
vue-simple-compiler success success

@johnsoncodehk
Copy link
Member Author

PR is now based on alien-signals 0.4.4, due to the implementation of some new fast paths (e.g. stackblitz/alien-signals#7), which gets more performance improvements compared to 0.3.2.

Benchmark result (baseline is f15e9d7):

 ✓ packages/reactivity/__benchmarks__/computed.bench.ts (13) 11622ms
   ✓ computed (13) 11620ms
     name                                                                    hz     min     max    mean     p75     p99    p995    p999     rme  samples
   · create computed                                               1,691,995.02  0.0005  0.0723  0.0006  0.0006  0.0007  0.0007  0.0017  ±0.11%   845998  [1.00x] ⇓
     create computed                                               1,693,497.15  0.0005  0.0472  0.0006  0.0006  0.0007  0.0007  0.0015  ±0.08%   846749  (baseline)
   · write ref, don't read computed (without effect)               1,441,569.95  0.0006  0.0691  0.0007  0.0007  0.0008  0.0008  0.0010  ±0.08%   720785  [1.01x] ⇑
     write ref, don't read computed (without effect)               1,432,267.74  0.0006  2.7299  0.0007  0.0007  0.0008  0.0008  0.0013  ±1.11%   716134  (baseline)
   · write ref, don't read computed (with effect)                    428,069.29  0.0022  0.0495  0.0023  0.0023  0.0025  0.0026  0.0047  ±0.08%   214035  [1.07x] ⇑
     write ref, don't read computed (with effect)                    399,988.18  0.0023  0.1397  0.0025  0.0025  0.0026  0.0028  0.0110  ±0.14%   199997  (baseline)
   · write ref, read computed (without effect)                       677,705.75  0.0013  0.3494  0.0015  0.0015  0.0016  0.0016  0.0026  ±0.18%   338853  [1.01x] ⇑
     write ref, read computed (without effect)                       671,805.41  0.0013  0.0417  0.0015  0.0015  0.0016  0.0016  0.0020  ±0.07%   335903  (baseline)
   · write ref, read computed (with effect)                          414,008.89  0.0022  0.0897  0.0024  0.0024  0.0025  0.0026  0.0035  ±0.09%   207005  [1.07x] ⇑
     write ref, read computed (with effect)                          387,378.44  0.0024  0.0708  0.0026  0.0026  0.0027  0.0029  0.0044  ±0.09%   193690  (baseline)
   · write ref, don't read 1000 computeds (without effect)         1,456,970.47  0.0005  0.0667  0.0007  0.0007  0.0008  0.0008  0.0010  ±0.08%   728486  [1.00x] ⇓
     write ref, don't read 1000 computeds (without effect)         1,458,368.05  0.0005  0.1715  0.0007  0.0007  0.0008  0.0008  0.0010  ±0.11%   729185  (baseline)
   · write ref, don't read 1000 computeds (with multiple effects)        625.20  1.4574  8.1845  1.5995  1.4915  7.4730  7.7244  8.1845  ±5.40%      313  [1.04x] ⇑
     write ref, don't read 1000 computeds (with multiple effects)        602.93  1.6270  2.0599  1.6586  1.6745  1.7688  1.8586  2.0599  ±0.27%      302  (baseline)
   · write ref, don't read 1000 computeds (with single effect)         1,167.11  0.8474  1.3441  0.8568  0.8546  0.9390  1.0556  1.3441  ±0.27%      584  [1.18x] ⇑
     write ref, don't read 1000 computeds (with single effect)           991.43  0.9982  1.1655  1.0086  1.0085  1.0822  1.0847  1.1655  ±0.13%      496  (baseline)
   · write ref, read 1000 computeds (no effect)                        1,478.18  0.6687  0.8053  0.6765  0.6760  0.7366  0.7611  0.8053  ±0.13%      740  [1.00x] ⇑
     write ref, read 1000 computeds (no effect)                        1,475.18  0.6693  0.8739  0.6779  0.6779  0.7200  0.7416  0.8739  ±0.13%      738  (baseline)
   · write ref, read 1000 computeds (with multiple effects)              642.61  1.5419  1.8908  1.5561  1.5530  1.6379  1.7578  1.8908  ±0.19%      322  [1.11x] ⇑
     write ref, read 1000 computeds (with multiple effects)              578.48  1.7140  1.9549  1.7287  1.7275  1.8278  1.9380  1.9549  ±0.15%      290  (baseline)
   · write ref, read 1000 computeds (with single effect)                 540.03  1.8353  2.0489  1.8517  1.8492  1.9534  2.0330  2.0489  ±0.15%      271  [1.05x] ⇑
     write ref, read 1000 computeds (with single effect)                 512.67  1.9348  2.1053  1.9506  1.9493  2.0503  2.0616  2.1053  ±0.13%      257  (baseline)
   · 1000 refs, read 1 computed (without effect)                       5,721.89  0.1720  0.2880  0.1748  0.1740  0.1958  0.2115  0.2745  ±0.13%     2861  [1.08x] ⇑
     1000 refs, read 1 computed (without effect)                       5,320.37  0.1717  7.7792  0.1880  0.1757  0.2818  0.7700  3.1639  ±4.05%     2661  (baseline)
   · 1000 refs, read 1 computed (with effect)                          5,784.17  0.1703  0.3046  0.1729  0.1722  0.1941  0.2040  0.2431  ±0.12%     2893  [1.01x] ⇑
     1000 refs, read 1 computed (with effect)                          5,743.96  0.1690  0.2600  0.1741  0.1738  0.1952  0.2024  0.2405  ±0.10%     2872  (baseline)

@yyx990803 yyx990803 merged commit 313dc61 into vuejs:minor Dec 2, 2024
13 checks passed
@johnsoncodehk johnsoncodehk deleted the alien-signals branch December 4, 2024 06:34
@nin-jin
Copy link

nin-jin commented Dec 24, 2024

Guys, you are doing it wrong. Your microbenchmarks are executed on unrealistic cases. As a result, you are sharpening your implementations for benchmarks, which in real applications leads to performance degradation. In particular, both the
this implementation and your previous one cannot cut off equivalent changes, and this leads to a cascade update of states with equivalent results. And this is not just slow. It is unpredictably slow! I wrote about this in detail here: https://dev.to/ninjin/preventing-equivalent-reactive-computing-4hk5

I added this library to Big State Managers Benchmark and, as expected, when emulating a complex application, the "fastest library" turned out to be very slow.

image

A detailed explanation of this benchmark is here: https://page.hyoo.ru/#!=3ia3ll_rcpl7b

@johnsoncodehk
Copy link
Member Author

johnsoncodehk commented Dec 24, 2024

Hi @nin-jin 👋, I don't know how to use the website so can't test it, but this problem we think needs to be avoided by developers, #9497 is the PR for this.

In fact, alien-signals has an equalityComputed API under the unstable namespace that can return the results you expect and you can take a try.

But anyway, this is not the right place to discuss. If you have more questions, please open an issue at https://github.com/stackblitz/alien-signals/issues, thanks.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants