-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add pseudocount to WMS fix V13 by removing samples with only 1 featur…
…e - gingival dataset
- Loading branch information
Showing
3 changed files
with
427 additions
and
113 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
Package: MicrobiomeBenchmarkDataAnalyses | ||
Title: Benchmarking analyses with the MicrobiomeBenchmarkData package | ||
Version: 0.99.27 | ||
Version: 0.99.28 | ||
Authors@R: | ||
person("Samuel David", "Gamboa-Tuz", email = "[email protected]", | ||
role = c("aut", "cre"), comment = c(ORCID = "0000-0002-6863-7943")) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
--- | ||
title: "Subgingival vs supgragingival plaque (V13 - OTU)" | ||
subtitle: "HMP_2012_16S_gingival_V13" | ||
author: "Samuel Gamboa" | ||
date: "`r format(Sys.time(), '%d %B, %Y')`" | ||
output: | ||
html_document: | ||
toc: yes | ||
--- | ||
|
||
```{r setup, include = FALSE} | ||
knitr::opts_chunk$set( | ||
collapse = TRUE, | ||
comment = "#>", | ||
warning = FALSE | ||
) | ||
``` | ||
|
||
```{r packages, message=FALSE, warning=FALSE} | ||
library(MicrobiomeBenchmarkDataAnalyses) | ||
library(MicrobiomeBenchmarkData) | ||
library(dplyr) | ||
library(purrr) | ||
library(phyloseq) | ||
library(mia) | ||
library(benchdamic) | ||
library(ggplot2) | ||
library(ggpubr) | ||
``` | ||
|
||
## Data | ||
|
||
Import data: | ||
|
||
```{r import data, message=FALSE} | ||
dat_name <- 'HMP_2012_16S_gingival_V13' | ||
conditions_col <- 'body_subsite' | ||
conditions <- c(condB = 'subgingival_plaque', condA = 'supragingival_plaque') | ||
tse <- getBenchmarkData(dat_name, dryrun = FALSE)[[1]] | ||
tse | ||
``` | ||
|
||
Filter low-abundant features: | ||
|
||
```{r filter features} | ||
tse_subset <- filterTaxa(tse, min_ab = 1, min_per = 0.2) | ||
tse_subset <- tse_subset[,which(!colSums(assay(tse_subset)) <= 1)] ## Needed for metagenomeSeq | ||
tse_subset | ||
``` | ||
|
||
Counts per body subsite: | ||
|
||
```{r samples per body subsite} | ||
col_data <- as_tibble(colData(tse_subset)) | ||
count(col_data, body_subsite) | ||
``` | ||
|
||
Number of subjects: | ||
|
||
```{r unique subjects} | ||
length(unique(col_data$subject_id)) | ||
``` | ||
|
||
## Prior information | ||
|
||
```{r feature annotations} | ||
row_data <- as.data.frame(rowData(tse_subset)) | ||
prior_info <- row_data[, c('genus', 'taxon_annotation')] | ||
prior_info$taxon_name <- rownames(row_data) | ||
prior_info$new_names <- paste0(prior_info$taxon_name, '|', prior_info$genus) | ||
prior_info <- | ||
dplyr::relocate(prior_info, taxon_name, new_names, genus, taxon_annotation) | ||
head(prior_info) | ||
``` | ||
|
||
## Convert to phyloseq | ||
|
||
```{r convert to phyloseq} | ||
ps <- convertToPhyloseq(tse_subset) | ||
sample_data(ps)[[conditions_col]] <- | ||
factor(sample_data(ps)[[conditions_col]], levels = conditions) | ||
ps | ||
``` | ||
|
||
## Differential abundance analysis | ||
|
||
Set normalization, weights, and DA method options: | ||
|
||
```{r norm, weights, methods} | ||
ps <- runNormalizations(set_norm_list(), ps, verbose = FALSE) | ||
zw <- weights_ZINB(ps, design = conditions_col) | ||
DA_methods <- set_DA_methods_list(conditions_col, conditions) | ||
for (i in seq_along(DA_methods)) { | ||
if (grepl("Seurat", names(DA_methods)[i])) { | ||
names(DA_methods[[i]]$contrast) <- NULL | ||
} else { | ||
next | ||
} | ||
} | ||
names(DA_methods) | ||
``` | ||
|
||
Run DA analysis: | ||
|
||
```{r run DA, warning=FALSE, message=FALSE} | ||
tim <- system.time({ | ||
DA_output <- imap(DA_methods, ~ { | ||
message("Running method ", .y, " - ", Sys.time()) | ||
tryCatch( | ||
error = function(e) NULL, | ||
runDA(list(.x), ps, weights = zw, verbose = FALSE) | ||
) | ||
}) |> | ||
list_flatten(name_spec = "{outer}") |> | ||
discard(is.null) | ||
DA_output <- map2(DA_output, names(DA_output), ~ { | ||
.x$name <- .y | ||
.x | ||
}) | ||
}) | ||
tim | ||
``` | ||
|
||
## Enrichment analysis | ||
|
||
### Define a threshold for LEFSE with CLR | ||
|
||
Define threshold variables: | ||
|
||
```{r define variables to use in createEnrichment} | ||
direction <- get_direction_cols(DA_output, conditions_col, conditions) | ||
adjThr<- rep(0.1, length(DA_output)) | ||
names(adjThr) <- names(DA_output) | ||
esThr <- rep(0, length(DA_output)) | ||
names(esThr) <- names(DA_output) | ||
esThr[grep("lefse.TSS", names(esThr))] <- 2 | ||
esThr[grep("lefse.CLR", names(esThr))] <- | ||
median(DA_output$LEfSe.CLR$statInfo$abs_score) | ||
slotV <- ifelse(grepl("lefse", names(DA_output)), "statInfo", "pValMat") | ||
colNameV <- ifelse(grepl("lefse", names(DA_output)), "LDA_scores", "adjP") | ||
typeV <- ifelse(grepl("lefse", names(DA_output)), "logfc", "pvalue") | ||
``` | ||
|
||
Run enrichment: | ||
|
||
```{r perform enrichment} | ||
enrichment <- createEnrichment( | ||
object = DA_output, | ||
priorKnowledge = prior_info, | ||
enrichmentCol = "taxon_annotation", | ||
namesCol = "new_names", | ||
slot = slotV, colName = colNameV, type = typeV, | ||
direction = direction, | ||
threshold_pvalue = adjThr, | ||
threshold_logfc = esThr, | ||
top = NULL, # No top feature selected | ||
alternative = "greater", | ||
verbose = FALSE | ||
) | ||
``` | ||
|
||
Extract summary of the enrichment analysis: | ||
|
||
```{r enrichment summary} | ||
enrichmentSummary <- purrr::map(enrichment, ~ { | ||
.x$summaries |> | ||
purrr::map(function(x) { | ||
x |> | ||
tibble::rownames_to_column(var = "direction") |> | ||
tidyr::pivot_longer( | ||
names_to = "annotation", values_to = "n", | ||
cols = 2 | ||
) | ||
}) |> | ||
dplyr::bind_rows() |> | ||
dplyr::relocate(pvalue) | ||
}) |> | ||
dplyr::bind_rows(.id = "method") |> | ||
dplyr::mutate( | ||
sig = dplyr::case_when( | ||
pvalue < 0.05 & pvalue > 0.01 ~ "*", | ||
pvalue < 0.01 & pvalue > 0.001 ~ "**", | ||
pvalue < 0.001 ~ "***", | ||
TRUE ~ "" | ||
) | ||
) |> | ||
dplyr::mutate( | ||
direction = dplyr::case_when( | ||
direction == "DOWN Abundant" ~ "Subgingival", | ||
direction == "UP Abundant" ~ "Supragingival", | ||
TRUE ~ direction | ||
) | ||
) | ||
head(enrichmentSummary) | ||
``` | ||
|
||
## Plots | ||
|
||
### Enrichment plot | ||
|
||
```{r enrichment plot} | ||
nn <- unique(enrichmentSummary$annotation) | ||
nn <- nn[!is.na(nn)] | ||
colorPalette <- palette.colors(palette = "Okabe-Ito")[2:(length(nn) + 1)] | ||
enPlot <- enrichmentSummary |> | ||
dplyr::left_join(getMethodClass(), by = "method") |> | ||
mutate( | ||
direction = factor(direction, levels = c("Supragingival", "Subgingival")), | ||
annotation = factor(annotation, levels = nn) | ||
) |> | ||
mutate( | ||
annotation = case_when( | ||
annotation == "aerobic" ~ "Aerobic", | ||
annotation == "anaerobic" ~ "Anaerobic", | ||
annotation == "facultative_anaerobic" ~ "Facultative anaerobic", | ||
TRUE ~ annotation | ||
) | ||
) |> | ||
ggplot(aes(method, n)) + | ||
geom_col( | ||
aes(fill = annotation), | ||
position = position_dodge2(width = 0.9) | ||
) + | ||
geom_text( | ||
aes(label = sig, color = annotation), | ||
position = position_dodge2(width = 0.9) | ||
) + | ||
facet_grid( | ||
direction ~ method_class, scales = "free_x", space = "free" | ||
) + | ||
scale_fill_manual(values = colorPalette, name = "Annotation") + | ||
scale_color_manual(values = colorPalette, name = "Annotation") + | ||
labs( | ||
x = "DA method", y = "Number of DAFs" | ||
) + | ||
theme_bw() + | ||
theme( | ||
axis.text.x = element_text(angle = 45, hjust = 1), | ||
legend.position = "bottom", | ||
strip.background = element_rect(fill = "white") | ||
) | ||
``` | ||
|
||
### Putative true positives - putative false positives | ||
|
||
Calculate TP - FP ratio (no threshold): | ||
|
||
```{r positives object} | ||
positives <- map(1:length(DA_output), .f = function(i) { | ||
positives <- createPositives( | ||
object = DA_output[i], | ||
priorKnowledge = prior_info, | ||
enrichmentCol = "taxon_annotation", namesCol = "new_names", | ||
slot = slotV[i], colName = colNameV[i], type = typeV[i], | ||
direction = direction[i], | ||
threshold_pvalue = 1, | ||
threshold_logfc = 0, | ||
top = seq.int(from = 0, to = 50, by = 5), | ||
alternative = "greater", | ||
verbose = FALSE, | ||
TP = list(c("DOWN Abundant", "anaerobic"), c("UP Abundant", "aerobic")), | ||
FP = list(c("DOWN Abundant", "aerobic"), c("UP Abundant", "anaerobic")) | ||
) |> | ||
dplyr::left_join(getMethodClass(), by = 'method') | ||
}) |> bind_rows() |> | ||
mutate(diff = jitter(TP - FP, amount = 1.5, factor = 2)) | ||
``` | ||
|
||
Positives plot: | ||
|
||
```{r positives plot, fig.height = 4, fig.width=12} | ||
# positives <- positives |> | ||
# mutate(diff = jitter(TP - FP, amount = 1.5, factor = 2)) |> | ||
# mutate( | ||
# base_method = case_when( | ||
# grepl("lefse", base_method) ~ sub("lefse", "LEfSe", base_method), | ||
# grepl("wilcox", base_method) ~ sub("wilcox", "Wilcox", base_method), | ||
# TRUE ~ base_method | ||
# ), | ||
# method = case_when( | ||
# grepl("lefse", method) ~ sub("lefse", "LEfSe", method), | ||
# grepl("wilcox", method) ~ sub("wilcox", "Wilcox", method), | ||
# TRUE ~ method | ||
# ) | ||
# ) | ||
vec <- positives$color | ||
names(vec) <- positives$base_method | ||
posPlot <- positives |> | ||
ggplot(aes(top, diff)) + | ||
geom_line( | ||
aes( | ||
group = method, color = base_method, linetype = norm, | ||
), | ||
) + | ||
geom_point( | ||
aes( | ||
color = base_method, shape = norm | ||
), | ||
) + | ||
facet_wrap(~method_class, nrow = 1) + | ||
labs( | ||
x = "Top DAFs", y = "TP - FP" | ||
) + | ||
scale_shape(name = "Normalization") + | ||
scale_linetype(name = "Normalization") + | ||
scale_color_manual(values = vec, name = "Base DA method") + | ||
theme_bw() + | ||
theme( | ||
legend.position = "bottom", | ||
strip.background = element_rect(fill = "white") | ||
) | ||
``` | ||
|
||
### Combined plots | ||
|
||
```{r combined plots, fig.height=9, fig.width=10} | ||
pp <- ggarrange( | ||
plotlist = list(enPlot, posPlot), ncol = 1, heights = c(1.5, 1) | ||
) | ||
pp | ||
``` | ||
|
||
```{r export plots, eval=TRUE, echo=FALSE} | ||
## Nice figure to explore. Not included in the paper | ||
# ggsave( | ||
# filename = "FigureX.pdf", plot = pp, dpi = 300, | ||
# height = 9, width = 10, | ||
# ) | ||
``` | ||
|
||
# Session Info | ||
|
||
```{r session information} | ||
sessioninfo::session_info() | ||
``` |
Oops, something went wrong.