Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use MLTensor and dispatch() and deprecate compute() #276

Merged
merged 3 commits into from
Oct 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions code/.eslintrc.js
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ module.exports = {
'CodeMirror': 'readonly',
'executeCodeSnippet': 'readonly',
'sizeOfShape': 'readonly',
'MLTensorUsage': 'readonly',
},
ignorePatterns: ['libs/'],
};
33 changes: 19 additions & 14 deletions code/samples/matmul.js
Original file line number Diff line number Diff line change
@@ -1,25 +1,30 @@
// Step 0: Create a context and graph builder for 'gpu', 'cpu' or 'npu'.
const context = await navigator.ml.createContext({deviceType: 'gpu'});
const builder = new MLGraphBuilder(context);
const descA = {dataType: 'float32', dimensions: [3, 4], shape: [3, 4]};
const descB = {dataType: 'float32', dimensions: [4, 3], shape: [4, 3]};
// Step 1: Create a computational graph calculating `c = a * b`.
const a = builder.input('a', {
dataType: 'float32',
dimensions: [3, 4],
shape: [3, 4],
});
const b = builder.input('b', {
dataType: 'float32',
dimensions: [4, 3],
shape: [4, 3],
});
const a = builder.input('a', descA);
const b = builder.input('b', descB);
const c = builder.matmul(a, b);
// Step 2: Compile it into an executable graph.
const graph = await builder.build({c});
// Step 3: Bind input and output buffers to the graph and execute.
const bufferA = new Float32Array(3*4).fill(1.0);
const bufferB = new Float32Array(4*3).fill(0.8);
const bufferC = new Float32Array(3*3);
const results = await context.compute(
graph, {'a': bufferA, 'b': bufferB}, {'c': bufferC});
descA.usage = MLTensorUsage.WRITE;
descB.usage = MLTensorUsage.WRITE;
const tensorA = await context.createTensor(descA);
const tensorB = await context.createTensor(descB);
context.writeTensor(tensorA, bufferA);
context.writeTensor(tensorB, bufferB);
const tensorC = await context.createTensor({
dataType: 'float32',
dimensions: [3, 3],
shape: [3, 3],
usage: MLTensorUsage.READ,
});
context.dispatch(graph, {a: tensorA, b: tensorB}, {c: tensorC});
const results = await context.readTensor(tensorC);
// Step 4: Retrieve the results.
console.log(`values: ${results.outputs.c}`);
console.log(`values: ${new Float32Array(results)}`);
25 changes: 17 additions & 8 deletions code/samples/mul_add.js
Original file line number Diff line number Diff line change
@@ -1,21 +1,30 @@
const operandType = {dataType: 'float32', dimensions: [2, 2], shape: [2, 2]};
const desc = {dataType: 'float32', dimensions: [2, 2], shape: [2, 2]};
const context = await navigator.ml.createContext();
const builder = new MLGraphBuilder(context);
// 1. Create a computational graph 'C = 0.2 * A + B'.
const constant = builder.constant(
{dataType: 'float32'}, new Float32Array([0.2]));
const A = builder.input('A', operandType);
const B = builder.input('B', operandType);
const A = builder.input('A', desc);
const B = builder.input('B', desc);
const C = builder.add(builder.mul(A, constant), B);
// 2. Build the graph into an executable.
const graph = await builder.build({'C': C});
// 3. Bind inputs to the graph and execute for the result.
const bufferA = new Float32Array(4).fill(1.0);
const bufferB = new Float32Array(4).fill(0.8);
const bufferC = new Float32Array(4);
const inputs = {'A': bufferA, 'B': bufferB};
const outputs = {'C': bufferC};
const results = await context.compute(graph, inputs, outputs);
desc.usage = MLTensorUsage.WRITE;
const tensorA = await context.createTensor(desc);
const tensorB = await context.createTensor(desc);
context.writeTensor(tensorA, bufferA);
context.writeTensor(tensorB, bufferB);
const tensorC = await context.createTensor({
...desc,
usage: MLTensorUsage.READ,
});
const inputs = {'A': tensorA, 'B': tensorB};
const outputs = {'C': tensorC};
context.dispatch(graph, inputs, outputs);
// The computed result of [[1, 1], [1, 1]] is in the buffer associated with
// the output operand.
console.log('Output value: ' + results.outputs.C);
const results = await context.readTensor(tensorC);
console.log('Output value: ' + new Float32Array(results));
23 changes: 17 additions & 6 deletions code/samples/simple_graph.js
Original file line number Diff line number Diff line change
Expand Up @@ -50,15 +50,26 @@ const graph = await builder.build({'output': output});
// Setup the input buffers with value 1.
const inputBuffer1 = new Float32Array(TENSOR_SIZE).fill(1);
const inputBuffer2 = new Float32Array(TENSOR_SIZE).fill(1);
const outputBuffer = new Float32Array(TENSOR_SIZE);

desc.usage = MLTensorUsage.WRITE;
const inputTensor1 = await context.createTensor(desc);
const inputTensor2 = await context.createTensor(desc);
context.writeTensor(inputTensor1, inputBuffer1);
context.writeTensor(inputTensor2, inputBuffer2);

const outputTensor = await context.createTensor({
...desc,
usage: MLTensorUsage.READ,
});

// Execute the compiled graph with the specified inputs.
const inputs = {
'input1': inputBuffer1,
'input2': inputBuffer2,
'input1': inputTensor1,
'input2': inputTensor2,
};
const outputs = {'output': outputBuffer};
const results = await context.compute(graph, inputs, outputs);
const outputs = {'output': outputTensor};
context.dispatch(graph, inputs, outputs);

console.log('Output value: ' + results.outputs.output);
const results = await context.readTensor(outputTensor);
console.log('Output value: ' + new Float32Array(results));
// Output value: 2.25,2.25,2.25,2.25,2.25,2.25,2.25,2.25
1 change: 1 addition & 0 deletions face_recognition/.eslintrc.js
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
module.exports = {
globals: {
'MLGraphBuilder': 'readonly',
'MLTensorUsage': 'readonly',
'tf': 'readonly',
},
};
25 changes: 20 additions & 5 deletions face_recognition/facenet_nchw.js
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ export class FaceNetNchw {
this.context_ = null;
this.builder_ = null;
this.graph_ = null;
this.inputTensor_ = null;
this.outputTensor_ = null;
this.weightsUrl_ = weightsOrigin() +
'/test-data/models/facenet_nchw/weights';
this.inputOptions = {
Expand All @@ -25,6 +27,7 @@ export class FaceNetNchw {
distanceMetric: 'euclidean',
threshold: 1.26,
};
this.outputShape_ = [1, 512];
}

async buildConv_(
Expand Down Expand Up @@ -138,10 +141,19 @@ export class FaceNetNchw {
async load(contextOptions) {
this.context_ = await navigator.ml.createContext(contextOptions);
this.builder_ = new MLGraphBuilder(this.context_);
const input = this.builder_.input('input', {
const inputDesc = {
dataType: 'float32',
dimensions: this.inputOptions.inputShape,
shape: this.inputOptions.inputShape,
};
const input = this.builder_.input('input', inputDesc);
inputDesc.usage = MLTensorUsage.WRITE;
this.inputTensor_ = await this.context_.createTensor(inputDesc);
this.outputTensor_ = await this.context_.createTensor({
dataType: 'float32',
dimensions: this.outputShape_,
shape: this.outputShape_,
usage: MLTensorUsage.READ,
});

const poolOptions = {windowDimensions: [3, 3], strides};
Expand Down Expand Up @@ -272,9 +284,12 @@ export class FaceNetNchw {
}
}

async compute(inputBuffer, outputs) {
const inputs = {'input': inputBuffer};
const results = await this.context_.compute(this.graph_, inputs, outputs);
return results;
async compute(inputBuffer) {
this.context_.writeTensor(this.inputTensor_, inputBuffer);
const inputs = {'input': this.inputTensor_};
const outputs = {'output': this.outputTensor_};
this.context_.dispatch(this.graph_, inputs, outputs);
const results = await this.context_.readTensor(this.outputTensor_);
return new Float32Array(results);
}
}
25 changes: 20 additions & 5 deletions face_recognition/facenet_nhwc.js
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ export class FaceNetNhwc {
this.context_ = null;
this.builder_ = null;
this.graph_ = null;
this.inputTensor_ = null;
this.outputTensor_ = null;
this.weightsUrl_ = weightsOrigin() +
'/test-data/models/facenet_nhwc/weights';
this.inputOptions = {
Expand All @@ -25,6 +27,7 @@ export class FaceNetNhwc {
distanceMetric: 'euclidean',
threshold: 1.26,
};
this.outputShape_ = [1, 512];
}

async buildConv_(input, namePrefix, options = undefined, relu = true) {
Expand Down Expand Up @@ -139,10 +142,19 @@ export class FaceNetNhwc {
async load(contextOptions) {
this.context_ = await navigator.ml.createContext(contextOptions);
this.builder_ = new MLGraphBuilder(this.context_);
const input = this.builder_.input('input', {
const inputDesc = {
dataType: 'float32',
dimensions: this.inputOptions.inputShape,
shape: this.inputOptions.inputShape,
};
const input = this.builder_.input('input', inputDesc);
inputDesc.usage = MLTensorUsage.WRITE;
this.inputTensor_ = await this.context_.createTensor(inputDesc);
this.outputTensor_ = await this.context_.createTensor({
dataType: 'float32',
dimensions: this.outputShape_,
shape: this.outputShape_,
usage: MLTensorUsage.READ,
});

const poolOptions = {windowDimensions: [3, 3], strides, layout: 'nhwc'};
Expand Down Expand Up @@ -241,9 +253,12 @@ export class FaceNetNhwc {
}
}

async compute(inputBuffer, outputs) {
const inputs = {'input': inputBuffer};
const results = await this.context_.compute(this.graph_, inputs, outputs);
return results;
async compute(inputBuffer) {
this.context_.writeTensor(this.inputTensor_, inputBuffer);
const inputs = {'input': this.inputTensor_};
const outputs = {'output': this.outputTensor_};
this.context_.dispatch(this.graph_, inputs, outputs);
const results = await this.context_.readTensor(this.outputTensor_);
return new Float32Array(results);
}
}
28 changes: 8 additions & 20 deletions face_recognition/main.js
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,6 @@ let stream = null;
let loadTime = 0;
let buildTime = 0;
let computeTime = 0;
let fdOutputs;
let frOutputs;
let deviceType = '';
let lastdeviceType = '';
let backend = '';
Expand Down Expand Up @@ -180,15 +178,14 @@ async function getEmbeddings(inputElem) {
const fdInputBuffer = utils.getInputTensor(inputElem, fdInputOptions);
let totalComputeTime = 0;
let start = performance.now();
const results = await fdInstance.compute(fdInputBuffer, fdOutputs);
const results = await fdInstance.compute(fdInputBuffer);
totalComputeTime = performance.now() - start;
fdOutputs = results.outputs;
const strokedRects = [];
const embeddings = [];
const height = inputElem.naturalHeight || inputElem.height;
const width = inputElem.naturalWidth || inputElem.width;
const fdOutputArrary = [];
for (const output of Object.entries(fdOutputs)) {
for (const output of Object.entries(results)) {
fdOutputArrary.push(output[1]);
}
const fdSsdOutputs = SsdDecoder.processSsdOutputTensor(
Expand Down Expand Up @@ -222,10 +219,9 @@ async function getEmbeddings(inputElem) {
frInputOptions.drawOptions = drawOptions;
const frInputBuffer = utils.getInputTensor(inputElem, frInputOptions);
start = performance.now();
const results = await frInstance.compute(frInputBuffer, frOutputs);
const results = await frInstance.compute(frInputBuffer);
totalComputeTime += performance.now() - start;
frOutputs = results.outputs;
const [...normEmbedding] = Float32Array.from(frOutputs.output);
const [...normEmbedding] = Float32Array.from(results);
embeddings.push(normEmbedding);
}
return {computeTime: totalComputeTime, strokedRects, embeddings};
Expand Down Expand Up @@ -330,12 +326,6 @@ async function main() {
frInstance = constructNetObject(frInstanceType);
fdInputOptions = fdInstance.inputOptions;
frInputOptions = frInstance.inputOptions;
fdOutputs = {};
for (const outputInfo of Object.entries(fdInstance.outputsInfo)) {
fdOutputs[outputInfo[0]] =
new Float32Array(utils.sizeOfShape(outputInfo[1]));
}
frOutputs = {'output': new Float32Array(utils.sizeOfShape([1, 512]))};
isFirstTimeLoad = false;
console.log(`- Model name: ${fdModelName}, Model layout: ${layout} -`);
// UI shows model loading progress
Expand Down Expand Up @@ -374,12 +364,10 @@ async function main() {
let medianComputeTime;
console.log('- Computing... ');
// Do warm up
const fdResults = await fdInstance.compute(new Float32Array(
utils.sizeOfShape(fdInputOptions.inputShape)), fdOutputs);
const frResults = await frInstance.compute(new Float32Array(
utils.sizeOfShape(frInputOptions.inputShape)), frOutputs);
fdOutputs = fdResults.outputs;
frOutputs = frResults.outputs;
await fdInstance.compute(new Float32Array(
utils.sizeOfShape(fdInputOptions.inputShape)));
await frInstance.compute(new Float32Array(
utils.sizeOfShape(frInputOptions.inputShape)));
for (let i = 0; i < numRuns; i++) {
if (numRuns > 1) {
// clear all predicted embeddings for benckmarking
Expand Down
1 change: 1 addition & 0 deletions facial_landmark_detection/.eslintrc.js
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
module.exports = {
globals: {
'MLGraphBuilder': 'readonly',
'MLTensorUsage': 'readonly',
'tf': 'readonly',
},
};
25 changes: 20 additions & 5 deletions facial_landmark_detection/face_landmark_nchw.js
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,15 @@ export class FaceLandmarkNchw {
this.context_ = null;
this.builder_ = null;
this.graph_ = null;
this.inputTensor_ = null;
this.outputTensor_ = null;
this.weightsUrl_ = weightsOrigin() +
'/test-data/models/face_landmark_nchw/weights';
this.inputOptions = {
inputLayout: 'nchw',
inputShape: [1, 3, 128, 128],
};
this.outputShape_ = [1, 136];
}

async buildMaxPool2d(input, options) {
Expand Down Expand Up @@ -69,10 +72,19 @@ export class FaceLandmarkNchw {
async load(contextOptions) {
this.context_ = await navigator.ml.createContext(contextOptions);
this.builder_ = new MLGraphBuilder(this.context_);
const input = this.builder_.input('input', {
const inputDesc = {
dataType: 'float32',
dimensions: this.inputOptions.inputShape,
shape: this.inputOptions.inputShape,
};
const input = this.builder_.input('input', inputDesc);
inputDesc.usage = MLTensorUsage.WRITE;
this.inputTensor_ = await this.context_.createTensor(inputDesc);
this.outputTensor_ = await this.context_.createTensor({
dataType: 'float32',
dimensions: this.outputShape_,
shape: this.outputShape_,
usage: MLTensorUsage.READ,
});

const poolOptions =
Expand Down Expand Up @@ -112,9 +124,12 @@ export class FaceLandmarkNchw {
}
}

async compute(inputBuffer, outputs) {
const inputs = {'input': inputBuffer};
const results = await this.context_.compute(this.graph_, inputs, outputs);
return results;
async compute(inputBuffer) {
this.context_.writeTensor(this.inputTensor_, inputBuffer);
const inputs = {'input': this.inputTensor_};
const outputs = {'output': this.outputTensor_};
this.context_.dispatch(this.graph_, inputs, outputs);
const results = await this.context_.readTensor(this.outputTensor_);
return new Float32Array(results);
}
}
Loading