Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ranking Metrics - Better Precision/Recall/MRR calculation #1492

Merged
merged 11 commits into from
Mar 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -206,19 +206,14 @@
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean_reciprocal_rank</th>\n",
" <td>1</td>\n",
" <td>0.333333</td>\n",
" </tr>\n",
" <tr>\n",
" <th>norm_dis_cumul_gain_k_3</th>\n",
" <td>1</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>precision_k_3</th>\n",
" <td>1</td>\n",
" <td>0.333333</td>\n",
" <td>0.666667</td>\n",
" </tr>\n",
" <tr>\n",
" <th>predictions</th>\n",
Expand All @@ -231,14 +226,19 @@
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>reciprocal_rank</th>\n",
" <td>1</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>targets</th>\n",
" <td>1</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>top_rank</th>\n",
" <td>1</td>\n",
" <td>3.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
Expand All @@ -249,13 +249,13 @@
"column \n",
"accuracy_k_3 1 1.000000\n",
"average_precision_k_3 1 1.000000\n",
"mean_reciprocal_rank 1 0.333333\n",
"norm_dis_cumul_gain_k_3 1 1.000000\n",
"precision_k_3 1 0.333333\n",
"precision_k_3 1 0.666667\n",
"predictions 1 0.000000\n",
"recall_k_3 1 1.000000\n",
"reciprocal_rank 1 1.000000\n",
"targets 1 0.000000\n",
"top_rank 1 3.000000"
"top_rank 1 1.000000"
]
},
"execution_count": 4,
Expand Down
45 changes: 32 additions & 13 deletions python/tests/experimental/api/test_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def test_log_batch_ranking_metrics_single_simple():

column_names = [
"accuracy_k_3",
"mean_reciprocal_rank",
"reciprocal_rank",
"precision_k_3",
"recall_k_3",
"top_rank",
Expand All @@ -33,17 +33,22 @@ def test_log_batch_ranking_metrics_single_simple():
for col in column_names:
assert col in pandas_summary.index
assert pandas_summary.loc["accuracy_k_3", "counts/n"] == 1
assert pandas_summary.loc["mean_reciprocal_rank", "counts/n"] == 1
assert pandas_summary.loc["reciprocal_rank", "counts/n"] == 4
assert pandas_summary.loc["precision_k_3", "counts/n"] == 4
assert pandas_summary.loc["recall_k_3", "counts/n"] == 4
assert pandas_summary.loc["top_rank", "counts/n"] == 4
assert pandas_summary.loc["average_precision_k_3", "counts/n"] == 4
assert pandas_summary.loc["norm_dis_cumul_gain_k_3", "counts/n"] == 1
assert pandas_summary.loc["average_precision_k_3", "counts/n"] == 4
assert pandas_summary.loc["norm_dis_cumul_gain_k_3", "counts/n"] == 1
assert pandas_summary.loc["norm_dis_cumul_gain_k_3", "counts/n"] == 4
# ndcg = [1, 0, 0.63, 0.5]
assert isclose(pandas_summary.loc["norm_dis_cumul_gain_k_3", "distribution/mean"], 0.53273, abs_tol=0.00001)
assert isclose(pandas_summary.loc["average_precision_k_3", "distribution/mean"], 0.45833, abs_tol=0.00001)
assert isclose(pandas_summary.loc["precision_k_3", "distribution/mean"], 0.25, abs_tol=0.00001)
assert isclose(pandas_summary.loc["recall_k_3", "distribution/mean"], 1.0, abs_tol=0.00001)
# rr = [1, 0, 0.5, 0.33333]
assert isclose(pandas_summary.loc["reciprocal_rank", "distribution/mean"], 0.45833, abs_tol=0.00001)
assert isclose(pandas_summary.loc["accuracy_k_3", "distribution/mean"], 0.75, abs_tol=0.00001)
assert isclose(pandas_summary.loc["sum_gain_k_3", "distribution/mean"], 0.75, abs_tol=0.00001)


def test_log_batch_ranking_metrics_binary_simple():
Expand All @@ -57,7 +62,7 @@ def test_log_batch_ranking_metrics_binary_simple():
k = 2
column_names = [
"accuracy_k_" + str(k),
"mean_reciprocal_rank",
"reciprocal_rank",
"precision_k_" + str(k),
"recall_k_" + str(k),
"top_rank",
Expand All @@ -67,16 +72,22 @@ def test_log_batch_ranking_metrics_binary_simple():
for col in column_names:
assert col in pandas_summary.index
assert pandas_summary.loc["accuracy_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["mean_reciprocal_rank", "counts/n"] == 1
assert pandas_summary.loc["reciprocal_rank", "counts/n"] == 4
assert pandas_summary.loc["precision_k_" + str(k), "counts/n"] == 4
assert pandas_summary.loc["recall_k_" + str(k), "counts/n"] == 4
assert pandas_summary.loc["top_rank", "counts/n"] == 4
assert pandas_summary.loc["average_precision_k_" + str(k), "counts/n"] == 4
assert pandas_summary.loc["norm_dis_cumul_gain_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["norm_dis_cumul_gain_k_" + str(k), "counts/n"] == 4
# ndcg@2 = [0.613147, 1.0, 1.0, 0.63093]
# average_precision_k_2 = [1.0, 0.0, 1.0, 0.5]
assert isclose(pandas_summary.loc["norm_dis_cumul_gain_k_" + str(k), "distribution/mean"], 0.81101, abs_tol=0.00001)
assert isclose(pandas_summary.loc["average_precision_k_" + str(k), "distribution/mean"], 0.62500, abs_tol=0.00001)
assert isclose(pandas_summary.loc["precision_k_" + str(k), "distribution/mean"], 0.5, abs_tol=0.00001)
assert isclose(pandas_summary.loc["recall_k_" + str(k), "distribution/mean"], 0.83333, abs_tol=0.00001)
# rr = [1, 0, 1, 0.5]
assert isclose(pandas_summary.loc["reciprocal_rank", "distribution/mean"], 0.625, abs_tol=0.00001)
assert isclose(pandas_summary.loc["accuracy_k_2", "distribution/mean"], 0.75, abs_tol=0.00001)
assert isclose(pandas_summary.loc["sum_gain_k_2", "distribution/mean"], 1.0, abs_tol=0.00001)


def test_log_batch_ranking_metrics_multiple_simple():
Expand Down Expand Up @@ -104,7 +115,7 @@ def test_log_batch_ranking_metrics_multiple_simple():

column_names = [
"accuracy_k_" + str(k),
"mean_reciprocal_rank",
"reciprocal_rank",
"precision_k_" + str(k),
"recall_k_" + str(k),
"top_rank",
Expand All @@ -114,16 +125,17 @@ def test_log_batch_ranking_metrics_multiple_simple():
for col in column_names:
assert col in pandas_summary.index
assert pandas_summary.loc["accuracy_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["mean_reciprocal_rank", "counts/n"] == 1
assert pandas_summary.loc["reciprocal_rank", "counts/n"] == 4
assert pandas_summary.loc["precision_k_" + str(k), "counts/n"] == 4
assert pandas_summary.loc["recall_k_" + str(k), "counts/n"] == 4
assert pandas_summary.loc["top_rank", "counts/n"] == 4
assert pandas_summary.loc["average_precision_k_" + str(k), "counts/n"] == 4
assert pandas_summary.loc["norm_dis_cumul_gain_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["norm_dis_cumul_gain_k_" + str(k), "counts/n"] == 4
# ndcg@3 = [0.9197, 0.0, 1.0, 0.386853]
# average_precision_k_3 = [0.83, 0.0, 1.0, 0.5]
assert isclose(pandas_summary.loc[f"norm_dis_cumul_gain_k_{k}", "distribution/median"], 0.57664, abs_tol=0.00001)
assert isclose(pandas_summary.loc[f"norm_dis_cumul_gain_k_{k}", "distribution/mean"], 0.57664, abs_tol=0.00001)
assert isclose(pandas_summary.loc["average_precision_k_" + str(k), "distribution/mean"], 0.58333, abs_tol=0.00001)
assert isclose(pandas_summary.loc["sum_gain_k_" + str(k), "distribution/mean"], 1.25, abs_tol=0.00001)


def test_log_batch_ranking_metrics_default_target():
Expand All @@ -135,7 +147,7 @@ def test_log_batch_ranking_metrics_default_target():
k = 3
column_names = [
"accuracy_k_" + str(k),
"mean_reciprocal_rank",
"reciprocal_rank",
"precision_k_" + str(k),
"recall_k_" + str(k),
"top_rank",
Expand All @@ -145,7 +157,7 @@ def test_log_batch_ranking_metrics_default_target():
for col in column_names:
assert col in pandas_summary.index
assert pandas_summary.loc["accuracy_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["mean_reciprocal_rank", "counts/n"] == 1
assert pandas_summary.loc["reciprocal_rank", "counts/n"] == 1
assert pandas_summary.loc["precision_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["recall_k_" + str(k), "counts/n"] == 1
assert pandas_summary.loc["top_rank", "counts/n"] == 1
Expand All @@ -155,6 +167,8 @@ def test_log_batch_ranking_metrics_default_target():
assert isclose(pandas_summary.loc[f"norm_dis_cumul_gain_k_{k}", "distribution/median"], 0.90130, abs_tol=0.00001)
# AP assumes binary relevance - this case doesn't raise an error, just a warning, but the result is not meaningful
assert isclose(pandas_summary.loc["average_precision_k_" + str(k), "distribution/mean"], 1.00000, abs_tol=0.00001)
assert isclose(pandas_summary.loc["accuracy_k_3", "distribution/mean"], 1.0, abs_tol=0.00001)
assert isclose(pandas_summary.loc["sum_gain_k_3", "distribution/mean"], 8.0, abs_tol=0.00001)


def test_log_batch_ranking_metrics_ranking_ndcg_wikipedia():
Expand Down Expand Up @@ -195,6 +209,10 @@ def test_log_batch_ranking_metrics_average_precision_sklearn_example():
pandas_summary = result.view().to_pandas()

assert isclose(pandas_summary.loc["average_precision_k_" + str(k), "distribution/mean"], 0.83333, abs_tol=0.00001)
assert isclose(pandas_summary.loc["precision_k_" + str(k), "distribution/mean"], 0.5, abs_tol=0.00001)
assert isclose(pandas_summary.loc["recall_k_" + str(k), "distribution/mean"], 1.0, abs_tol=0.00001)
assert isclose(pandas_summary.loc["reciprocal_rank", "distribution/mean"], 1.0, abs_tol=0.00001)
assert isclose(pandas_summary.loc["sum_gain_k_" + str(k), "distribution/mean"], 2.0, abs_tol=0.00001)


def test_log_batch_ranking_metrics_average_precision():
Expand All @@ -215,3 +233,4 @@ def test_log_batch_ranking_metrics_average_precision():
assert isclose(
pandas_summary.loc["average_precision_k_" + str(k), "distribution/mean"], res[1], abs_tol=0.00001
)
assert isclose(pandas_summary.loc["reciprocal_rank", "distribution/mean"], 0.45833, abs_tol=0.00001)
Loading
Loading