Skip to content

woven-planet/GS-Pose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence

teaser

The paper and github pages are available:

Environment Installation

conda create -n gspose python=3.9
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
cd third_party/nndistance
python build.py install  

Dataset Preparation

training dataset preparation

Download the ShapeNet (https://shapenet.org/) and change the path in tools/shapenet scripts correspondingly. Then run

python tools/shapenet/1_shapenet_preprocess.py 
python tools/shapenet/2_shapenet_rendering.py

The data after processing should have the structure

--data--shapenet--bottle--dino_3d.pkl
                       |--color--0.png
                       |--depth--0.png
                       |--feature--0.pt
                       |--intrin_ba--0.txt
                       |--models
                       |--poses_ba--0.txt
                       |--visibility--0.txt

testing dataset processing

Download the NOCS dataset (https://github.com/hughw19/NOCS_CVPR2019) and run

python tools/nocs/preprocess.py

Training and Testing

python train_gspose.py +experiment=train.yaml ++train_cat='camera'
python train_gspose.py +experiment=test.yaml ++train_cat='camera'

License

The Apache License 2.0 in our repo is applied except the codes below.

  • pointGAN: the codes in the third_party/nndistance folder are modified from homepage Link under MIT License Link.
  • CPPF: the codes in the eval folder are modified from homepage Link under MIT License Link.
  • LightGlue: the codes in the src/models/transformer_module folder are modified from homepage Link under Apache-2.0 License Link.
  • ONEPosePlus: the code in the training_gspose.py and src/models/optimizers folder are modified from homepage Link under Apache-2.0 License Link.
  • NOCS: the code in src/utils/umeyama_scale.py is modified from homepage Link under MIT License Link.
  • DINOv2: the dinov2 foundation model is from homepage Link under Apache-2.0 License Link.

Acknowledgement

We thank the above projects and corresponding authors for their opensource codes.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages