💻 PSRN (Parallel Symbolic Regression Network) enhanced SymbolicRegression.jl via faster, large-scale parallel symbolic evaluations on GPUs. Based on SymbolicRegression.jl.
git clone https://github.com/x66ccff/SymbolicRegressionGPU.jl
julia ]
(@v1.1x) pkg> dev .
(@v1.1x) pkg> build -v SymbolicRegressionGPU
Note
If an error occurs at 100% progress of cmake, it can still be used (this issue will be fixed shortly).
export JULIA_NUM_THREADS=4 # allow @spawn for starting PSRN task
julia example.jl
To cite this fork SymbolicRegressionGPU.jl, please use the following BibTeX entry:
@misc{SymbolicRegressionGPU.jl,
author = {
Ruan, Kai AND
Cranmer, Miles AND
Sun, Hao
},
title = {SymbolicRegressionGPU.jl: PSRN enhanced SymbolicRegression.jl for fast, large-scale parallel symbolic evaluations on GPUs},
year = {2024},
url = {https://github.com/x66ccff/SymbolicRegressionGPU.jl}
}
@misc{cranmerInterpretableMachineLearning2023,
title = {Interpretable {Machine} {Learning} for {Science} with {PySR} and {SymbolicRegression}.jl},
url = {http://arxiv.org/abs/2305.01582},
doi = {10.48550/arXiv.2305.01582},
urldate = {2023-07-17},
publisher = {arXiv},
author = {Cranmer, Miles},
month = may,
year = {2023},
note = {arXiv:2305.01582 [astro-ph, physics:physics]},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, Computer Science - Machine Learning, Computer Science - Neural and Evolutionary Computing, Computer Science - Symbolic Computation, Physics - Data Analysis, Statistics and Probability},
}
🎉 Enjoy your symbolic regression journey with SymbolicRegressionGPU.jl! 🎉