This is the codes and data for GANE model in our paper "GANE: A Generative Adversarial Network Embedding".
If you would like to acknowledge our efforts, please cite the following paper:
@article{hong2019gane,
title={GANE: A Generative Adversarial Network Embedding},
author={Hong, Huiting and Li, Xin and Wang, Mingzhong},
journal={IEEE transactions on neural networks and learning systems},
year={2019},
publisher={IEEE}
}
python 2.7
tensorflow
cPickle
numpy
multiprocessing
There are four files:
utils.py
: Utile functions for data preparing;dis_model.py
: The discriminator of GANE;gen_model.py
: The generator of GANE;gane.py
: The trainer to minimax our discriminator and generator.
python gane.py --emb_dim 128 --epochs=150 --suffix 128d --init_lr_gen 1e-5 --init_lr_dis 1e-5
- The output files (learned embeddings) will be stored in the
output-suffix
directory during training process, if--suffix suffix
.