This package simplifies your interaction with various GPT models, eliminating the need for tokens or other methods to access GPT. It also allows you to use three artificial intelligences to generate images: DALLΒ·E, Prodia and more, all of this without restrictions or limits
You can install the package via PIP
pip install gpti
GPTI provides access to a variety of artificial intelligence models to meet various needs. Currently, the available models include:
If you want to access the premium models, enter your credentials. You can obtain them by clicking here.
from gpti import nexra
nexra("user-xxxxxxxx", "nx-xxxxxxx-xxxxx-xxxxx");
import json
from gpti import gpt
res = gpt.v1(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
}
], prompt="Can you repeat my name?", model="GPT-4", markdown=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Select one of these available models in the API to enhance your experience.
- gpt-4
- gpt-4-0613
- gpt-4-32k
- gpt-4-0314
- gpt-4-32k-0314
- gpt-3.5-turbo
- gpt-3.5-turbo-16k
- gpt-3.5-turbo-0613
- gpt-3.5-turbo-16k-0613
- gpt-3.5-turbo-0301
- text-davinci-003
- text-davinci-002
- code-davinci-002
- gpt-3
- text-curie-001
- text-babbage-001
- text-ada-001
- davinci
- curie
- babbage
- ada
- babbage-002
- davinci-002
It's quite similar, with the difference that it has the capability to generate real-time responses via streaming using gpt-3.5-turbo.
import json
from gpti import gpt
res = gpt.v2(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
import json
from gpti import gpt
res = gpt.v2(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
GPT-4 has been enhanced by me, but errors may arise due to technological complexity. It is advisable to exercise caution when relying entirely on its accuracy for online queries.
import json
from gpti import gpt
res = gpt.web(prompt="Are you familiar with the movie Wonka released in 2023?", markdown=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
import json
from gpti import gpt
res = gpt.v3(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
import json
from gpti import gpt
res = gpt.v3(messages=[
{
"role": "assistant",
"content": "Hello! How are you today?"
},
{
"role": "user",
"content": "Hello, my name is Yandri."
},
{
"role": "assistant",
"content": "Hello, Yandri! How are you today?"
},
{
"role": "user",
"content": "Can you repeat my name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
import json
from gpti import bing
res = bing(messages=[
{
"role" => "assistant",
"content" => "Hello! How can I help you today? π"
},
{
"role": "user",
"content": "Can you tell me how many movies you've told me about?"
}
], conversation_style="Balanced", markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
import json
from gpti import bing
res = bing(messages=[
{
"role" => "assistant",
"content" => "Hello! How can I help you today? π"
},
{
"role": "user",
"content": "Can you tell me how many movies you've told me about?"
}
], conversation_style="Balanced", markdown=False, stream=True)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
Parameter | Default | Description |
---|---|---|
conversation_style | Balanced | You can use between: "Balanced", "Creative" and "Precise" |
markdown | false | You can convert the dialogues into continuous streams or not into Markdown |
stream | false | You are given the option to choose whether you prefer the responses to be in real-time or not |
import json
from gpti import llama
res = llama(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
import json
from gpti import llama
res = llama(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=True)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
import json
from gpti import blackbox
res = blackbox(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=False)
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
import json
from gpti import blackbox
res = blackbox(messages=[
{
"role": "user",
"content": "Hello! How are you? Could you tell me your name?"
}
], markdown=False, stream=True)
if res.error() != None:
print(json.dumps(res.error()))
else:
for chunk in res.stream():
print(json.dumps(chunk))
import json
from gpti import imageai
res = imageai(prompt="cat color red", model="dalle", response="url" | "base64", data={})
if res.error() != None:
print(json.dumps(res.error()))
else:
print(json.dumps(res.result()))
Currently, some models require your credentials to access them, while others are free. For more details and examples, please refer to the complete documentation.
These are the error codes that will be presented in case the API fails.
Code | Error | Description |
---|---|---|
400 | BAD_REQUEST | Not all parameters have been entered correctly |
500 | INTERNAL_SERVER_ERROR | The server has experienced failures |
200 | The API worked without issues | |
403 | FORBIDDEN | Your API key has expired and needs to be renewed |
401 | UNAUTHORIZED | API credentials are required |