Skip to content

Commit

Permalink
Add Brunner2017
Browse files Browse the repository at this point in the history
  • Loading branch information
ybayle committed Nov 24, 2017
1 parent b50600c commit 4d8271a
Show file tree
Hide file tree
Showing 13 changed files with 44 additions and 10 deletions.
16 changes: 9 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ However, these surveys do not cover music information retrieval tasks that are i
| [Vision-based detection of acoustic timed events: A case study on clarinet note onsets](http://dorienherremans.com/dlm2017/papers/bazzica2017clarinet.pdf) | No |
| Neural net modeling of music | No |
| [Deep learning techniques for music generation - A survey](https://arxiv.org/pdf/1709.01620.pdf) | No |
| [JamBot: Music theory aware chord based generation of polyphonic music with LSTMs](https://arxiv.org/pdf/1711.07682.pdf) | [GitHub](https://github.com/brunnergino/JamBot) |
| [A supervised learning approach to musical style recognition](https://www.researchgate.net/profile/Giuseppe_Buzzanca/publication/228588086_A_supervised_learning_approach_to_musical_style_recognition/links/54b43ee90cf26833efd0109f.pdf) | No |
| [XFlow: 1D <-> 2D cross-modal deep neural networks for audiovisual classification](https://arxiv.org/pdf/1709.00572.pdf) | No |
| [Machine listening intelligence](http://dorienherremans.com/dlm2017/papers/cella2017mli.pdf) | No |
Expand Down Expand Up @@ -223,23 +224,24 @@ Each entry in [dl4m.bib](dl4m.bib) also displays additional information:

## Statistics and visualisations

- 154 papers referenced. See the details in [dl4m.bib](dl4m.bib).
- If you are applying DL to music, there are [319 other researchers](authors.md) in your field.
- 155 papers referenced. See the details in [dl4m.bib](dl4m.bib).
There are more papers from 2017 than any other years combined.
Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- If you are applying DL to music, there are [323 other researchers](authors.md) in your field.
- 31 tasks investigated. See the list of [tasks](tasks.md).
Tasks pie chart:
![Tasks pie chart](fig/pie_chart_task.png)
- 42 datasets used. See the list of [datasets](datasets.md).
- 43 datasets used. See the list of [datasets](datasets.md).
Datasets pie chart:
![Datasets pie chart](fig/pie_chart_dataset.png)
- 25 architectures used. See the list of [architectures](architectures.md).
Architectures pie chart:
![Architectures pie chart](fig/pie_chart_architecture.png)
- 7 frameworks used. See the list of [frameworks](frameworks.md).
- 8 frameworks used. See the list of [frameworks](frameworks.md).
Frameworks pie chart:
![Frameworks pie chart](fig/pie_chart_framework.png)
- Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- Only 38 articles (24%) provide their source code.
- Only 39 articles (25%) provide their source code.
Repeatability is the key to good science, so check out the [list of useful resources on reproducibility for MIR and ML](reproducibility.md).

[Go back to top](https://github.com/ybayle/awesome-deep-learning-music#deep-learning-for-music-dl4m-)
Expand Down
4 changes: 4 additions & 0 deletions authors.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
- Brakel, Philémon
- Bransen, Jeroen
- Briot, Jean-Pierre
- Brunner, Gino
- Buzzanca, Giuseppe
- Böck, Sebastian
- Cai, Lianhong
Expand Down Expand Up @@ -290,13 +291,16 @@
- Wang, Wenwu
- Wang, Xinxi
- Wang, Ye
- Wang, Yuyi
- Wang, Ziyuan
- Watson, David
- Wattenhofer, Roger
- Weiss, Ron J.
- Weninger, Felix
- Wenwu Wang
- Weyde, Tillman
- Widmer, Gerhard
- Wiesendanger, Jonas
- Wilson, Kevin
- Wu, Chung-Hsien
- Wu, Raymond
Expand Down
1 change: 1 addition & 0 deletions datasets.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/)
- [LMD](https://sites.google.com/site/carlossillajr/resources/the-latin-music-database-lmd)
- [LabROSA](http://labrosa.ee.columbia.edu/projects/melody/)
- [Lakh MIDI](https://labrosa.ee.columbia.edu/sounds/music/)
- [Last.fm](https://www.last.fm/)
- [LyricFind](http://lyricfind.com/)
- [MAPS](http://www.tsi.telecom-paristech.fr/aao/en/2010/07/08/maps-database-a-piano-database-for-multipitch-estimation-and-automatic-transcription-of-music/)
Expand Down
26 changes: 25 additions & 1 deletion dl4m.bib
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,30 @@ @unpublished{Briot2017
year = {2017}
}

@inproceedings{Brunner2017,
activation = {Softmax},
address = {Boston, MA, USA},
architecture = {RNN-LSTM},
author = {Brunner, Gino and Wang, Yuyi and Wattenhofer, Roger and Wiesendanger, Jonas},
batch = {No},
booktitle = {[IEEE_ICTAI](http://ictai2017.org/)},
code = {https://github.com/brunnergino/JamBot},
dataaugmentation = {No},
dataset = {[Lakh MIDI](https://labrosa.ee.columbia.edu/sounds/music/)},
dropout = {No},
epochs = {4},
framework = {Keras-TensorFlow},
gpu = {1},
learningrate = {0.00001},
link = {https://arxiv.org/pdf/1711.07682.pdf},
month = {Nov.},
optimizer = {Adam},
pages = {1--8},
task = {Composition},
title = {JamBot: Music theory aware chord based generation of polyphonic music with LSTMs},
year = {2017}
}

@inproceedings{Buzzanca2002,
author = {Buzzanca, Giuseppe},
booktitle = {Music and Artificial Intelligence. Additional Proceedings of the Second International Conference, ICMAI},
Expand Down Expand Up @@ -681,7 +705,7 @@ @inproceedings{Koutini2017
}

@unpublished{Kum2017,
activation = {Leakey ReLU},
activation = {Leaky ReLU},
architecture = {CNN},
author = {Kum, Sangeun and Nam, Juhan},
batch = {No},
Expand Down
2 changes: 1 addition & 1 deletion dl4m.py
Original file line number Diff line number Diff line change
Expand Up @@ -235,7 +235,7 @@ def my_autopct(pct):
return my_autopct


def pie_chart(items, field_name, max_nb_slice=7):
def pie_chart(items, field_name, max_nb_slice=8):
"""Description of pie_chart
Display a pie_chart from the items given in input
"""
Expand Down
3 changes: 2 additions & 1 deletion dl4m.tsv
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
2017 inproceedings Vision-based detection of acoustic timed events: A case study on clarinet note onsets Bazzica, Alessio and Van Gemert, JC and Liem, CCS and Hanjalic, A http://dorienherremans.com/dlm2017/papers/bazzica2017clarinet.pdf Onset detection [C4S](http://mmc.tudelft.nl/users/alessio-bazzica#C4S-dataset) CNN
1988 inproceedings Neural net modeling of music Bharucha, J.
2017 unpublished Deep learning techniques for music generation - A survey Briot, Jean-Pierre and Hadjeres, Gaëtan and Pachet, François https://arxiv.org/pdf/1709.01620.pdf
2017 inproceedings JamBot: Music theory aware chord based generation of polyphonic music with LSTMs Brunner, Gino and Wang, Yuyi and Wattenhofer, Roger and Wiesendanger, Jonas https://arxiv.org/pdf/1711.07682.pdf https://github.com/brunnergino/JamBot Composition [Lakh MIDI](https://labrosa.ee.columbia.edu/sounds/music/) Keras-TensorFlow RNN-LSTM No No 4 No Softmax 0.00001 Adam 1
2002 inproceedings A supervised learning approach to musical style recognition Buzzanca, Giuseppe https://www.researchgate.net/profile/Giuseppe_Buzzanca/publication/228588086_A_supervised_learning_approach_to_musical_style_recognition/links/54b43ee90cf26833efd0109f.pdf MGR
2017 unpublished XFlow: 1D <-> 2D cross-modal deep neural networks for audiovisual classification Cangea, Cătălina and Veličković, Petar and Liò, Pietro https://arxiv.org/pdf/1709.00572.pdf
2017 inproceedings Machine listening intelligence Cella, Carmine-Emanuele http://dorienherremans.com/dlm2017/papers/cella2017mli.pdf
Expand Down Expand Up @@ -62,7 +63,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
2016 inproceedings A fully convolutional deep auditory model for musical chord recognition Korzeniowski, Filip and Widmer, Gerhard https://www.researchgate.net/profile/Filip_Korzeniowski/publication/305590295_A_Fully_Convolutional_Deep_Auditory_Model_for_Musical_Chord_Recognition/links/579486ba08aed51475cc6958/A-Fully-Convolutional-Deep-Auditory-Model-for-Musical-Chord-Recognition.pdf?_iepl%5BhomeFeedViewId%5D=HTzFFmKPia2YminQ4psHT5at&_iepl%5Bcontexts%5D%5B0%5D=pcfhf&_iepl%5BinteractionType%5D=publicationDownload&origin=publication_detail&ev=pub_int_prw_xdl&msrp=Dz_6LKHzYcPyP-LmgZPF-m63ayZ6k0entFEntooiu_e32zfETNQXKPQSTFOI87NONIIQuUQdnUtwORdomTXfteTrb09KiAIdDtBJnw_02P6JeRr5zu2eyaCG.2Uxsi_eENxtbYL39lvorIK8LofRYhkgpUHzpzmVzkIEiyHc0wUY87rEa4PH1qbXi4k4RyagHUsA2IsZtewnprglORjx2v9Cwbk9ZfQ.cd67BaqtHul_hE6SX6vUFKuldz81aH6dWq-cYMkq5vQKCHcvB8l9zgeM694Efb_r2wBB5GT9idt3OLeME0UxVHI6ROxamgK3LMNlSw.JtZXAo9HhR9t-8Wl3gxJgnoM4--rtmDEUDbXSWezbFyU-CoB_nyfxbRQ4kdoN4-5aJ3Tgx4YHdikicqAhc_cezB2ZntjxkB4rEDx1A Chord recognition
2017 unpublished End-to-end musical key estimation using a convolutional neural network Korzeniowski, Filip and Widmer, Gerhard https://arxiv.org/pdf/1706.02921.pdf
2017 inproceedings MediaEval 2017 AcousticBrainz genre task: Multilayer perceptron approach Koutini, Khaled and Imenina, Alina and Dorfer, Matthias and Gruber, Alexander Rudolf and Schedl, Markus http://www.cp.jku.at/research/papers/Koutini_2017_mediaeval-acousticbrainz.pdf
2017 unpublished Classification-based singing melody extraction using deep convolutional neural networks Kum, Sangeun and Nam, Juhan https://www.preprints.org/manuscript/201711.0027/v1 No F0 No [LabROSA](http://labrosa.ee.columbia.edu/projects/melody/) & [MedleyDB](http://medleydb.weebly.com/) & [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/) & [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/) & [iKala](http://mac.citi.sinica.edu.tw/ikala/) & [MIR-1K](https://sites.google.com/site/unvoicedsoundseparation/mir-1k) & [ADC2004](http://labrosa.ee.columbia.edu/projects/melody/) Keras CNN 0.3 No 100 Pitch shift -2, -1, +1, +2 semitones Leakey ReLU 0.02 SGD 2
2017 unpublished Classification-based singing melody extraction using deep convolutional neural networks Kum, Sangeun and Nam, Juhan https://www.preprints.org/manuscript/201711.0027/v1 No F0 No [LabROSA](http://labrosa.ee.columbia.edu/projects/melody/) & [MedleyDB](http://medleydb.weebly.com/) & [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/) & [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/) & [iKala](http://mac.citi.sinica.edu.tw/ikala/) & [MIR-1K](https://sites.google.com/site/unvoicedsoundseparation/mir-1k) & [ADC2004](http://labrosa.ee.columbia.edu/projects/melody/) Keras CNN 0.3 No 100 Pitch shift -2, -1, +1, +2 semitones Leaky ReLU 0.02 SGD 2
1989 article The representation of pitch in a neural net model of chord classification Laden, Bernice and Keefe, Douglas H. http://www.jstor.org/stable/3679550 Chord recognition
2009 inproceedings Unsupervised feature learning for audio classification using convolutional deep belief networks Lee, Honglak and Pham, Peter and Largman, Yan and Ng, Andrew Y http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf Speaker gender recognition [TIMIT](https://catalog.ldc.upenn.edu/LDC93S1) CDBN
2017 article Multi-level and multi-scale feature aggregation using pre-trained convolutional neural networks for music auto-tagging Lee, Jongpil and Nam, Juhan https://arxiv.org/pdf/1703.01793v2.pdf
Expand Down
Binary file modified fig/articles_per_year.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_architecture.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_dataset.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_framework.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_task.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions frameworks.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac

- Caffe
- Keras
- Keras-TensorFlow
- Keras-Theano
- Not disclosed
- PyTorch
Expand Down
1 change: 1 addition & 0 deletions publication_type.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,5 +52,6 @@
- SMC
- WASPAA
- WIMP
- [IEEE_ICTAI](http://ictai2017.org/)
- [NIPS](https://nips.cc/)
- [NIPS_ML4Audio](https://nips.cc/Conferences/2017/Schedule?showEvent=8790)

0 comments on commit 4d8271a

Please sign in to comment.