Skip to content

Commit

Permalink
fix merge PR #14
Browse files Browse the repository at this point in the history
  • Loading branch information
ybayle committed May 26, 2019
1 parent f18d726 commit 849af53
Show file tree
Hide file tree
Showing 14 changed files with 136 additions and 125 deletions.
23 changes: 15 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,7 @@ However, these surveys do not cover music information retrieval tasks that are i
| 2017 | [Multi-level and multi-scale feature aggregation using pre-trained convolutional neural networks for music auto-tagging](https://arxiv.org/pdf/1703.01793v2.pdf) | No |
| 2017 | [Multi-level and multi-scale feature aggregation using sample-level deep convolutional neural networks for music classification](https://arxiv.org/pdf/1706.06810.pdf) | [GitHub](https://github.com/jongpillee/musicTagging_MSD) |
| 2017 | [Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms](https://arxiv.org/pdf/1703.01789v2.pdf) | No |
| 2017 | [A SeqGAN for Polyphonic Music Generation](https://arxiv.org/pdf/1710.11418.pdf) | [GitHub](https://github.com/L0SG/seqgan-music) |
| 2017 | [Harmonic and percussive source separation using a convolutional auto encoder](http://www.eurasip.org/Proceedings/Eusipco/Eusipco2017/papers/1570346835.pdf) | No |
| 2017 | [Stacked convolutional and recurrent neural networks for music emotion recognition](https://arxiv.org/pdf/1706.02292.pdf) | No |
| 2017 | [A deep learning approach to source separation and remixing of hiphop music](https://repositori.upf.edu/bitstream/handle/10230/32919/Martel_2017.pdf?sequence=1&isAllowed=y) | No |
Expand All @@ -172,7 +173,6 @@ However, these surveys do not cover music information retrieval tasks that are i
| 2017 | [Designing efficient architectures for modeling temporal features with convolutional neural networks](http://ieeexplore.ieee.org/document/7952601/) | [GitHub](https://github.com/jordipons/ICASSP2017) |
| 2017 | [Timbre analysis of music audio signals with convolutional neural networks](https://github.com/ronggong/EUSIPCO2017) | [GitHub](https://github.com/jordipons/EUSIPCO2017) |
| 2017 | [Deep learning and intelligent audio mixing](http://www.semanticaudio.co.uk/wp-content/uploads/2017/09/WIMP2017_Martinez-RamirezReiss.pdf) | No |
| 2017 | [A SeqGAN for Polyphonic Music Generation](https://arxiv.org/pdf/1710.11418v2.pdf) | [GitHub](https://github.com/L0SG/seqgan-music) |
| 2017 | [Deep learning for event detection, sequence labelling and similarity estimation in music signals](http://ofai.at/~jan.schlueter/pubs/phd/phd.pdf) | No |
| 2017 | [Music feature maps with convolutional neural networks for music genre classification](https://www.researchgate.net/profile/Thomas_Pellegrini/publication/319326354_Music_Feature_Maps_with_Convolutional_Neural_Networks_for_Music_Genre_Classification/links/59ba5ae3458515bb9c4c6724/Music-Feature-Maps-with-Convolutional-Neural-Networks-for-Music-Genre-Classification.pdf?origin=publication_detail&ev=pub_int_prw_xdl&msrp=wzXuHZAa5zAnqEmErYyZwIRr2H0q01LnNEd4Wd7A15CQfdVLwdy98pmE-AdnrDvoc3-bVENSFrHt0yhaOiE2mQrYllVS9CJZOk-c9R0j_R1rbgcZugS6RtQ_.AUjPuJSF5P_DMngf-woH7W-7jdnQlbNQziR4_h6NnCHfR_zGcEa8vOyyOz5gx5nc4azqKTPQ5ZgGGLUxkLj1qCQLEQ5ThkhGlWHLyA.s6MBZE20-EO_RjRGCOCV4wk0WSFdN56Aloiraxz9hKCbJwRM2Et27RHVUA8jj9H8qvXIB6f7zSIrQgjXGrL2yCpyQlLffuf57rzSwg.KMMXbZrHsihV8DJM53xkHAWf3VebCJESi4KU4btNv9nQsyK2KnkhSQaTILKv0DSZY3c70a61LzywCBuoHtIhVOFhW5hVZN2n5O9uKQ) | No |
| 2017 | [Automatic drum transcription for polyphonic recordings using soft attention mechanisms and convolutional neural networks](https://carlsouthall.files.wordpress.com/2017/12/ismir2017adt.pdf) | [GitHub](https://github.com/CarlSouthall/ADTLib) |
Expand All @@ -192,10 +192,17 @@ However, these surveys do not cover music information retrieval tasks that are i
| 2017 | [Attention and localization based on a deep convolutional recurrent model for weakly supervised audio tagging](https://arxiv.org/pdf/1703.06052.pdf) | [GitHub](https://github.com/yongxuUSTC/att_loc_cgrnn) |
| 2017 | [Surrey-CVSSP system for DCASE2017 challenge task4](https://www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge_technical_reports/DCASE2017_Xu_146.pdf) | [GitHub](https://github.com/yongxuUSTC/dcase2017_task4_cvssp) |
| 2017 | [A study on LSTM networks for polyphonic music sequence modelling](https://qmro.qmul.ac.uk/xmlui/handle/123456789/24946) | [Website](http://www.eecs.qmul.ac.uk/~ay304/code/ismir17) |
| 2018 | [MUSIC TRANSFORMER:GENERATING MUSIC WITH LONG-TERM STRUCTURE](https://arxiv.org/pdf/1809.04281.pdf) | No |
| 2018 | [MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment](https://arxiv.org/pdf/1709.06298.pdf) | [GitHub](https://github.com/salu133445/musegan) |
| 2018 | [Music Theory Inspired Policy Gradient Method for Piano Music Transcription](https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf) | No |
| 2018 | [Music transformer: Generating music with long-term structure](https://arxiv.org/pdf/1809.04281.pdf) | No |
| 2018 | [Music theory inspired policy gradient method for piano music transcription](https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf) | No |
| 2019 | [Generating Long Sequences with Sparse Transformers](https://arxiv.org/pdf/1904.10509.pdf) | [GitHub](https://github.com/openai/sparse_attention) |
address = {Montreal, Canada} | [Music theory inspired policy gradient method for piano music transcription](https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf) | No |
reproducible = {No} | [Generating Long Sequences with Sparse Transformers](https://arxiv.org/pdf/1904.10509.pdf) | [GitHub](https://github.com/openai/sparse_attention) |
address = {Montreal, Canada} | [Music theory inspired policy gradient method for piano music transcription](https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf) | No |
reproducible = {No} | [Generating Long Sequences with Sparse Transformers](https://arxiv.org/pdf/1904.10509.pdf) | [GitHub](https://github.com/openai/sparse_attention) |
epochs = {100} | [A SeqGAN for Polyphonic Music Generation](https://arxiv.org/pdf/1710.11418.pdf) | [GitHub](https://github.com/L0SG/seqgan-music) |

This comment has been minimized.

Copy link
@just1900

just1900 May 27, 2019

Contributor

It seems that there are some mistakes while generating the paper list.

This comment has been minimized.

Copy link
@ybayle

ybayle May 27, 2019

Author Owner

@legendj thanks for spotting this! It is now fixed. Tell me if you see another error.

address = {Montreal, Canada} | [Music theory inspired policy gradient method for piano music transcription](https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf) | No |
reproducible = {No} | [Generating Long Sequences with Sparse Transformers](https://arxiv.org/pdf/1904.10509.pdf) | [GitHub](https://github.com/openai/sparse_attention) |

[Go back to top](https://github.com/ybayle/awesome-deep-learning-music#deep-learning-for-music-dl4m-)

Expand Down Expand Up @@ -247,17 +254,17 @@ Each entry in [dl4m.bib](dl4m.bib) also displays additional information:
There are more papers from 2017 than any other years combined.
Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- If you are applying DL to music, there are [348 other researchers](authors.md) in your field.
- 35 tasks investigated. See the list of [tasks](tasks.md).
- If you are applying DL to music, there are [352 other researchers](authors.md) in your field.
- 34 tasks investigated. See the list of [tasks](tasks.md).
Tasks pie chart:
![Tasks pie chart](fig/pie_chart_task.png)
- 51 datasets used. See the list of [datasets](datasets.md).
- 52 datasets used. See the list of [datasets](datasets.md).
Datasets pie chart:
![Datasets pie chart](fig/pie_chart_dataset.png)
- 29 architectures used. See the list of [architectures](architectures.md).
- 30 architectures used. See the list of [architectures](architectures.md).
Architectures pie chart:
![Architectures pie chart](fig/pie_chart_architecture.png)
- 10 frameworks used. See the list of [frameworks](frameworks.md).
- 9 frameworks used. See the list of [frameworks](frameworks.md).
Frameworks pie chart:
![Frameworks pie chart](fig/pie_chart_framework.png)
- Only 44 articles (26%) provide their source code.
Expand Down
1 change: 1 addition & 0 deletions architectures.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,3 +31,4 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- Transformer
- U-Net
- VPNN
- tensor2tensor
28 changes: 16 additions & 12 deletions authors.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,8 @@

- Adavanne, Sharath
- Alec Radford
- Andrew M. Dai
- Arumugam, Muthumari
- Arzt, Andreas
- Ashish Vaswani
- Badeau, Roland
- Bammer, Roswitha
- Barbieri, Francesco
Expand Down Expand Up @@ -36,7 +34,6 @@
- Chen, Tanfang
- Chen, Wenxiao
- Cheng, Wen-Huang
- Cheng{-}Zhi Anna Huang
- Chesmore, David
- Chiang, Chin-Chin
- Cho, Kyunghyun
Expand All @@ -45,19 +42,20 @@
- Costa, Yandre MG
- Courville, Aaron
- Coutinho, Eduardo
- Curtis Hawthorne
- Dai, Andrew M.
- Dannenberg, Roger B
- Das, Samarjit
- David, Bertrand
- De Haas, W Bas
- De Lyon, Insa
- Deng, Junqi
- Dieleman, Sander
- Dimoulas, Charalampos
- Dinculescu, Monica
- Dixon, Simon
- Doerfler, Monika
- Dong, Hao-Wen
- Dorfer, Matthias
- Douglas Eck
- Drossos, Konstantinos
- Duppada, Venkatesh
- Durand, Simon
Expand Down Expand Up @@ -99,6 +97,7 @@
- Han, Yoonchang
- Hanjalic, A
- Harchaoui, Zaid
- Hawthorne, Curtis
- He, Wenqi
- Hennequin, Romain
- Herrera, Jorge
Expand All @@ -107,21 +106,23 @@
- Hiray, Sushant
- Hirvonen, Toni
- Hockman, Jason
- Hoffman, Matthew D.
- Holzapfel, Andre
- Hsiao, Wen-Yi
- Hsu, Yu-Lun
- Hu, Min-Chun
- Huang, Allen
- Huang, Cheng-Zhi Anna
- Huang, Qiang
- Humphrey, Eric J.
- Hutchings, P.
- Huttunen, Heikki
- Hwang, Uiwon
- Ide, Ichiro
- Ilya Sutskever
- Imenina, Alina
- Jackson, Philip J. B.
- Jain, Shubham
- Jakob Uszkoreit
- Janer Mestres, Jordi
- Janer, Jordi
- Jang, Jyh-Shing R
Expand Down Expand Up @@ -162,6 +163,7 @@
- Lee, Honglak
- Lee, Jongpil
- Lee, Kyogu
- Lee, Sang-gil
- Lee, Taejin
- Lee, Tan
- Leglaive, Simon
Expand All @@ -171,6 +173,7 @@
- Li, Peter
- Li, Siyan
- Li, Tom LH
- Li, Xinjian
- Li, Xinxing
- Lidy, Thomas
- Liem, CCS
Expand All @@ -187,14 +190,14 @@
- Materka, Andrzej
- Mathulaprangsan, Seksan
- Matityaho, Benyamin
- Matthew D. Hoffman
- McFee, Brian
- Medhat, Fady
- Mehri, Soroush
- Meng, Fanhang
- Mertins, Alfred
- Metze, Florian
- Mimilakis, Stylianos Ioannis
- Min, Seonwoo
- Miron, Marius
- Mitsufuji, Yuki
- Montecchio, Nicola
Expand All @@ -209,7 +212,6 @@
- Nielsen, Frank
- Nieto, Oriol
- Niewiadomski, Adam
- Noam Shazeer
- Ogihara, Mitsunori
- Oliveira, Luiz S
- Oramas, Sergio
Expand Down Expand Up @@ -248,7 +250,6 @@
- Roma, Gerard
- Rosasco, Lorenzo
- Sandler, Mark Brian
- Sang{-}gil Lee
- Santos, João Felipe
- Santoso, Andri
- Saurous, Rif A.
Expand All @@ -263,12 +264,13 @@
- Schultz, Tanja
- Scott Gray
- Senac, Christine
- Seonwoo Min
- Serra, Xavier
- Seybold, Bryan
- Shazeer, Noam
- Shi, Zhengshan
- Sigtia, Siddharth
- Silla, Carlos N
- Simon, Ian
- Simpson, Andrew J. R.
- Slaney, Malcolm
- Slizovskaia, Olga
Expand All @@ -282,7 +284,6 @@
- Stoller, Daniel
- Sturm, Bob L.
- Su, Hong
- Sungroh Yoon
- Takahashi, Naoya
- Takiguchi, Tetsuya
- Tanaka, Hidehiko
Expand All @@ -295,12 +296,13 @@
- Tsaptsinos, Alexandros
- Tsipas, Nikolaos
- Uhlich, Stefan
- Uiwon Hwang
- Ullrich, Karen
- Uszkoreit, Jakob
- Valin, Jean-Marc
- Van Gemert, JC
- Van Gool, Luc
- Van den Oord, Aaron
- Vaswani, Ashish
- Velarde, Gissel
- Veličković, Petar
- Virtanen, Tuomas
Expand All @@ -316,6 +318,7 @@
- Wang, Wenwu
- Wang, Xinxi
- Wang, Ye
- Wang, Yun
- Wang, Yuyi
- Wang, Ziyuan
- Watson, David
Expand All @@ -340,6 +343,7 @@
- Yang, Yi-Hsuan
- Ycart, Adrien
- Yoo, Chang D
- Yoon, Sungroh
- Zhang, Chiyuan
- Zhang, Hui
- Zhang, Pengjing
Expand Down
3 changes: 2 additions & 1 deletion datasets.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- Inhouse
- No
- [32 Beethoven’s piano sonatas gathered from https://archive.org](https://soundcloud.com/samplernn/sets)
- [413 hours of recorded solo piano music](http://papers.nips.cc/paper/8023-the-challenge-of-realistic-music-generation-modelling-raw-audio-at-scale-supplemental.zip)
- [7digital](https://7digital.com)
- [ADC2004](http://labrosa.ee.columbia.edu/projects/melody/)
- [Acoustic Event](https://data.vision.ee.ethz.ch/cvl/ae_dataset/)
Expand All @@ -24,7 +25,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- [IDMT-SMT-Drums](https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html)
- [IRMAS](https://www.upf.edu/web/mtg/irmas)
- [J.S. Bach chorales dataset](https://github.com/czhuang/JSB-Chorales-dataset)
- [JSB Chorales](ftp://i11ftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip)
- [JSB Chorales](https://github.com/czhuang/JSB-Chorales-dataset)
- [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/)
- [LMD](https://sites.google.com/site/carlossillajr/resources/the-latin-music-database-lmd)
- [LSDB](lsdb.flow-machines.com/)
Expand Down
Loading

0 comments on commit 849af53

Please sign in to comment.