Skip to content

Commit

Permalink
[Update] added papers about transformer-based music generation and RL…
Browse files Browse the repository at this point in the history
…-based methods
  • Loading branch information
just1900 committed May 25, 2019
1 parent 4dd6bf5 commit a1e1ee4
Show file tree
Hide file tree
Showing 14 changed files with 102 additions and 7 deletions.
18 changes: 11 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,7 @@ However, these surveys do not cover music information retrieval tasks that are i
| 2017 | [Designing efficient architectures for modeling temporal features with convolutional neural networks](http://ieeexplore.ieee.org/document/7952601/) | [GitHub](https://github.com/jordipons/ICASSP2017) |
| 2017 | [Timbre analysis of music audio signals with convolutional neural networks](https://github.com/ronggong/EUSIPCO2017) | [GitHub](https://github.com/jordipons/EUSIPCO2017) |
| 2017 | [Deep learning and intelligent audio mixing](http://www.semanticaudio.co.uk/wp-content/uploads/2017/09/WIMP2017_Martinez-RamirezReiss.pdf) | No |
| 2017 | [A SeqGAN for Polyphonic Music Generation](https://arxiv.org/pdf/1710.11418v2.pdf) | [GitHub](https://github.com/L0SG/seqgan-music) |
| 2017 | [Deep learning for event detection, sequence labelling and similarity estimation in music signals](http://ofai.at/~jan.schlueter/pubs/phd/phd.pdf) | No |
| 2017 | [Music feature maps with convolutional neural networks for music genre classification](https://www.researchgate.net/profile/Thomas_Pellegrini/publication/319326354_Music_Feature_Maps_with_Convolutional_Neural_Networks_for_Music_Genre_Classification/links/59ba5ae3458515bb9c4c6724/Music-Feature-Maps-with-Convolutional-Neural-Networks-for-Music-Genre-Classification.pdf?origin=publication_detail&ev=pub_int_prw_xdl&msrp=wzXuHZAa5zAnqEmErYyZwIRr2H0q01LnNEd4Wd7A15CQfdVLwdy98pmE-AdnrDvoc3-bVENSFrHt0yhaOiE2mQrYllVS9CJZOk-c9R0j_R1rbgcZugS6RtQ_.AUjPuJSF5P_DMngf-woH7W-7jdnQlbNQziR4_h6NnCHfR_zGcEa8vOyyOz5gx5nc4azqKTPQ5ZgGGLUxkLj1qCQLEQ5ThkhGlWHLyA.s6MBZE20-EO_RjRGCOCV4wk0WSFdN56Aloiraxz9hKCbJwRM2Et27RHVUA8jj9H8qvXIB6f7zSIrQgjXGrL2yCpyQlLffuf57rzSwg.KMMXbZrHsihV8DJM53xkHAWf3VebCJESi4KU4btNv9nQsyK2KnkhSQaTILKv0DSZY3c70a61LzywCBuoHtIhVOFhW5hVZN2n5O9uKQ) | No |
| 2017 | [Automatic drum transcription for polyphonic recordings using soft attention mechanisms and convolutional neural networks](https://carlsouthall.files.wordpress.com/2017/12/ismir2017adt.pdf) | [GitHub](https://github.com/CarlSouthall/ADTLib) |
Expand All @@ -191,7 +192,10 @@ However, these surveys do not cover music information retrieval tasks that are i
| 2017 | [Attention and localization based on a deep convolutional recurrent model for weakly supervised audio tagging](https://arxiv.org/pdf/1703.06052.pdf) | [GitHub](https://github.com/yongxuUSTC/att_loc_cgrnn) |
| 2017 | [Surrey-CVSSP system for DCASE2017 challenge task4](https://www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge_technical_reports/DCASE2017_Xu_146.pdf) | [GitHub](https://github.com/yongxuUSTC/dcase2017_task4_cvssp) |
| 2017 | [A study on LSTM networks for polyphonic music sequence modelling](https://qmro.qmul.ac.uk/xmlui/handle/123456789/24946) | [Website](http://www.eecs.qmul.ac.uk/~ay304/code/ismir17) |
| 2018 | [MUSIC TRANSFORMER:GENERATING MUSIC WITH LONG-TERM STRUCTURE](https://arxiv.org/pdf/1809.04281.pdf) | No |
| 2018 | [MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment](https://arxiv.org/pdf/1709.06298.pdf) | [GitHub](https://github.com/salu133445/musegan) |
| 2018 | [Music Theory Inspired Policy Gradient Method for Piano Music Transcription](https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf) | No |
| 2019 | [Generating Long Sequences with Sparse Transformers](https://arxiv.org/pdf/1904.10509.pdf) | [GitHub](https://github.com/openai/sparse_attention) |

[Go back to top](https://github.com/ybayle/awesome-deep-learning-music#deep-learning-for-music-dl4m-)

Expand Down Expand Up @@ -238,24 +242,24 @@ Each entry in [dl4m.bib](dl4m.bib) also displays additional information:

## Statistics and visualisations

- 160 papers referenced. See the details in [dl4m.bib](dl4m.bib).
- 164 papers referenced. See the details in [dl4m.bib](dl4m.bib).
There are more papers from 2017 than any other years combined.
Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- If you are applying DL to music, there are [329 other researchers](authors.md) in your field.
- 33 tasks investigated. See the list of [tasks](tasks.md).
- If you are applying DL to music, there are [348 other researchers](authors.md) in your field.
- 35 tasks investigated. See the list of [tasks](tasks.md).
Tasks pie chart:
![Tasks pie chart](fig/pie_chart_task.png)
- 48 datasets used. See the list of [datasets](datasets.md).
- 51 datasets used. See the list of [datasets](datasets.md).
Datasets pie chart:
![Datasets pie chart](fig/pie_chart_dataset.png)
- 27 architectures used. See the list of [architectures](architectures.md).
- 29 architectures used. See the list of [architectures](architectures.md).
Architectures pie chart:
![Architectures pie chart](fig/pie_chart_architecture.png)
- 9 frameworks used. See the list of [frameworks](frameworks.md).
- 10 frameworks used. See the list of [frameworks](frameworks.md).
Frameworks pie chart:
![Frameworks pie chart](fig/pie_chart_framework.png)
- Only 42 articles (26%) provide their source code.
- Only 44 articles (26%) provide their source code.
Repeatability is the key to good science, so check out the [list of useful resources on reproducibility for MIR and ML](reproducibility.md).

[Go back to top](https://github.com/ybayle/awesome-deep-learning-music#deep-learning-for-music-dl4m-)
Expand Down
2 changes: 2 additions & 0 deletions architectures.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,5 +27,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- RNN
- RNN-LSTM
- ResNet
- SeqGAN
- Transformer
- U-Net
- VPNN
19 changes: 19 additions & 0 deletions authors.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
# List of authors

- Adavanne, Sharath
- Alec Radford
- Andrew M. Dai
- Arumugam, Muthumari
- Arzt, Andreas
- Ashish Vaswani
- Badeau, Roland
- Bammer, Roswitha
- Barbieri, Francesco
Expand Down Expand Up @@ -33,6 +36,7 @@
- Chen, Tanfang
- Chen, Wenxiao
- Cheng, Wen-Huang
- Cheng{-}Zhi Anna Huang
- Chesmore, David
- Chiang, Chin-Chin
- Cho, Kyunghyun
Expand All @@ -41,6 +45,7 @@
- Costa, Yandre MG
- Courville, Aaron
- Coutinho, Eduardo
- Curtis Hawthorne
- Dannenberg, Roger B
- David, Bertrand
- De Haas, W Bas
Expand All @@ -52,6 +57,7 @@
- Doerfler, Monika
- Dong, Hao-Wen
- Dorfer, Matthias
- Douglas Eck
- Drossos, Konstantinos
- Duppada, Venkatesh
- Durand, Simon
Expand Down Expand Up @@ -111,9 +117,11 @@
- Hutchings, P.
- Huttunen, Heikki
- Ide, Ichiro
- Ilya Sutskever
- Imenina, Alina
- Jackson, Philip J. B.
- Jain, Shubham
- Jakob Uszkoreit
- Janer Mestres, Jordi
- Janer, Jordi
- Jang, Jyh-Shing R
Expand Down Expand Up @@ -158,6 +166,7 @@
- Lee, Tan
- Leglaive, Simon
- Lewis, J. P.
- Li, Juncheng
- Li, Lihua
- Li, Peter
- Li, Siyan
Expand All @@ -178,11 +187,13 @@
- Materka, Andrzej
- Mathulaprangsan, Seksan
- Matityaho, Benyamin
- Matthew D. Hoffman
- McFee, Brian
- Medhat, Fady
- Mehri, Soroush
- Meng, Fanhang
- Mertins, Alfred
- Metze, Florian
- Mimilakis, Stylianos Ioannis
- Miron, Marius
- Mitsufuji, Yuki
Expand All @@ -198,6 +209,7 @@
- Nielsen, Frank
- Nieto, Oriol
- Niewiadomski, Adam
- Noam Shazeer
- Ogihara, Mitsunori
- Oliveira, Luiz S
- Oramas, Sergio
Expand All @@ -223,17 +235,20 @@
- Prockup, Matthew
- Qian, Jiyuan
- Qian, Sheng
- Qu, Shuhui
- Radenen, Mathieu
- Ramírez, Marco A. Martínez
- Reiss, Joshua D.
- Ren, Gang
- Rewon Child
- Richard, Gaël
- Riedmiller, Martin
- Rigaud, François
- Robinson, John
- Roma, Gerard
- Rosasco, Lorenzo
- Sandler, Mark Brian
- Sang{-}gil Lee
- Santos, João Felipe
- Santoso, Andri
- Saurous, Rif A.
Expand All @@ -246,7 +261,9 @@
- Schuller, Björn W
- Schuller, Gerald
- Schultz, Tanja
- Scott Gray
- Senac, Christine
- Seonwoo Min
- Serra, Xavier
- Seybold, Bryan
- Shi, Zhengshan
Expand All @@ -265,6 +282,7 @@
- Stoller, Daniel
- Sturm, Bob L.
- Su, Hong
- Sungroh Yoon
- Takahashi, Naoya
- Takiguchi, Tetsuya
- Tanaka, Hidehiko
Expand All @@ -277,6 +295,7 @@
- Tsaptsinos, Alexandros
- Tsipas, Nikolaos
- Uhlich, Stefan
- Uiwon Hwang
- Ullrich, Karen
- Valin, Jean-Marc
- Van Gemert, JC
Expand Down
3 changes: 3 additions & 0 deletions datasets.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- [Homburg](http://www-ai.cs.uni-dortmund.de/audio.html)
- [IDMT-SMT-Drums](https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html)
- [IRMAS](https://www.upf.edu/web/mtg/irmas)
- [J.S. Bach chorales dataset](https://github.com/czhuang/JSB-Chorales-dataset)
- [JSB Chorales](ftp://i11ftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip)
- [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/)
- [LMD](https://sites.google.com/site/carlossillajr/resources/the-latin-music-database-lmd)
Expand All @@ -39,7 +40,9 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- [MedleyDB](http://medleydb.weebly.com/)
- [MusicNet](https://homes.cs.washington.edu/~thickstn/musicnet.html)
- [NTT MLS](http://www.ntt-at.com/product/speech/)
- [Nottingham dataset](http://abc.sourceforge.net/NMD/)
- [Open Multitrack Testbed](http://www.semanticaudio.co.uk/projects/omtb/)
- [Piano-e-Competition dataset (competition history)](http://www.piano-e-competition.com/)
- [Piano-midi.de](Piano-midi.de)
- [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/)
- [SALAMI](http://ddmal.music.mcgill.ca/research/salami/annotations)
Expand Down
59 changes: 59 additions & 0 deletions dl4m.bib
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
@comment{}}

@inproceedings{Bharucha1988,
author = {Bharucha, J.},
booktitle = {Proceedings of the First Workshop on Artificial Intelligence and Music},
Expand Down Expand Up @@ -1782,6 +1784,23 @@ @inproceedings{Ramirez2017
year = {2017}
}

@inproceedings{Lee2017,
architecture = {SeqGAN},
author = {Sang{-}gil Lee and Uiwon Hwang and Seonwoo Min and Sungroh Yoon},
batch = {No},
booktitle = {CoRR},
code = {https://github.com/L0SG/seqgan-music},
dataaugmentation = {No},
dataset = {[Nottingham dataset](http://abc.sourceforge.net/NMD/)},
framework = {Tensorflow},
input = {MIDI},
link = {https://arxiv.org/pdf/1710.11418v2.pdf},
loss = {No},
task = {Polyphonic music sequence modelling},
title = {A SeqGAN for Polyphonic Music Generation},
year = {2017}
}

@phdthesis{Schlueter2017,
author = {Schlüter, Jan},
link = {http://ofai.at/~jan.schlueter/pubs/phd/phd.pdf},
Expand Down Expand Up @@ -2034,6 +2053,22 @@ @inproceedings{Ycart2017
year = {2017}
}

@inproceedings{Huang2018,
architecture = {Transformer & RNN},
author = {Cheng{-}Zhi Anna Huang and Ashish Vaswani and Jakob Uszkoreit and Noam Shazeer and Curtis Hawthorne and Andrew M. Dai and Matthew D. Hoffman and Douglas Eck},
batch = {No},
booktitle = {CoRR},
dataaugmentation = {Time Stretches & pitch transcription},
dataset = {[J.S. Bach chorales dataset](https://github.com/czhuang/JSB-Chorales-dataset) & [Piano-e-Competition dataset (competition history)](http://www.piano-e-competition.com/)},
framework = {tensor2tensor},
input = {MIDI},
link = {https://arxiv.org/pdf/1809.04281.pdf},
loss = {No},
task = {Polyphonic music sequence modelling},
title = {MUSIC TRANSFORMER:GENERATING MUSIC WITH LONG-TERM STRUCTURE},
year = {2018}
}

@inproceedings{Dong2018,
activation = {ReLU & Leaky ReLU},
architecture = {GAN & CNN},
Expand Down Expand Up @@ -2065,3 +2100,27 @@ @inproceedings{Dong2018
year = {2018}
}

@article{Li2018,
architecture = {CNN & RNN},
author = {Li, Juncheng and Qu, Shuhui and Metze, Florian},
link = {https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf},
task = {Music Transcription},
title = {Music Theory Inspired Policy Gradient Method for Piano Music Transcription},
year = {2018}
}

@unpublished{Child2019,
architecture = {Transformer},
author = {Rewon Child and Scott Gray and Alec Radford and Ilya Sutskever},
batch = {No},
code = {https://github.com/openai/sparse_attention},
input = {Raw Audio},
link = {https://arxiv.org/pdf/1904.10509.pdf},
loss = {No},
note = {this paper is mainly about how sparse transformer are implemented},
pages = {8--9},
task = {audio generation},
title = {Generating Long Sequences with Sparse Transformers},
year = {2019}
}

4 changes: 4 additions & 0 deletions dl4m.tsv
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
2017 inproceedings Designing efficient architectures for modeling temporal features with convolutional neural networks Pons, Jordi and Serra, Xavier http://ieeexplore.ieee.org/document/7952601/ https://github.com/jordipons/ICASSP2017 MGR [Ballroom](http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html) CNN
2017 inproceedings Timbre analysis of music audio signals with convolutional neural networks Pons, Jordi and Slizovskaia, Olga and Gong, Rong and Gómez, Emilia and Serra, Xavier https://github.com/ronggong/EUSIPCO2017 https://github.com/jordipons/EUSIPCO2017 CNN
2017 inproceedings Deep learning and intelligent audio mixing Ramírez, Marco A. Martínez and Reiss, Joshua D. http://www.semanticaudio.co.uk/wp-content/uploads/2017/09/WIMP2017_Martinez-RamirezReiss.pdf No Mixing [Open Multitrack Testbed](http://www.semanticaudio.co.uk/projects/omtb/) DAE No Adam
2017 inproceedings A SeqGAN for Polyphonic Music Generation Sang{-}gil Lee and Uiwon Hwang and Seonwoo Min and Sungroh Yoon https://arxiv.org/pdf/1710.11418v2.pdf https://github.com/L0SG/seqgan-music Polyphonic music sequence modelling [Nottingham dataset](http://abc.sourceforge.net/NMD/) Tensorflow SeqGAN No No MIDI No
2017 phdthesis Deep learning for event detection, sequence labelling and similarity estimation in music signals Schlüter, Jan http://ofai.at/~jan.schlueter/pubs/phd/phd.pdf
2017 inproceedings Music feature maps with convolutional neural networks for music genre classification Senac, Christine and Pellegrini, Thomas and Mouret, Florian and Pinquier, Julien https://www.researchgate.net/profile/Thomas_Pellegrini/publication/319326354_Music_Feature_Maps_with_Convolutional_Neural_Networks_for_Music_Genre_Classification/links/59ba5ae3458515bb9c4c6724/Music-Feature-Maps-with-Convolutional-Neural-Networks-for-Music-Genre-Classification.pdf?origin=publication_detail&ev=pub_int_prw_xdl&msrp=wzXuHZAa5zAnqEmErYyZwIRr2H0q01LnNEd4Wd7A15CQfdVLwdy98pmE-AdnrDvoc3-bVENSFrHt0yhaOiE2mQrYllVS9CJZOk-c9R0j_R1rbgcZugS6RtQ_.AUjPuJSF5P_DMngf-woH7W-7jdnQlbNQziR4_h6NnCHfR_zGcEa8vOyyOz5gx5nc4azqKTPQ5ZgGGLUxkLj1qCQLEQ5ThkhGlWHLyA.s6MBZE20-EO_RjRGCOCV4wk0WSFdN56Aloiraxz9hKCbJwRM2Et27RHVUA8jj9H8qvXIB6f7zSIrQgjXGrL2yCpyQlLffuf57rzSwg.KMMXbZrHsihV8DJM53xkHAWf3VebCJESi4KU4btNv9nQsyK2KnkhSQaTILKv0DSZY3c70a61LzywCBuoHtIhVOFhW5hVZN2n5O9uKQ MGR [GTzan](http://marsyas.info/downloads/datasets.html) CNN Spectrograms & common audio features
2017 inproceedings Automatic drum transcription for polyphonic recordings using soft attention mechanisms and convolutional neural networks Southall, Carl and Stables, Ryan and Hockman, Jason https://carlsouthall.files.wordpress.com/2017/12/ismir2017adt.pdf https://github.com/CarlSouthall/ADTLib Transcription [IDMT-SMT-Drums](https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html) CNN & BRNN
Expand All @@ -158,4 +159,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
2017 inproceedings Attention and localization based on a deep convolutional recurrent model for weakly supervised audio tagging Xu, Yong and Kong, Qiuqiang and Huang, Qiang and Wang, Wenwu and Plumbley, Mark D. https://arxiv.org/pdf/1703.06052.pdf https://github.com/yongxuUSTC/att_loc_cgrnn DCASE 2016 Task 4 Domestic audio tagging CRNN
2017 techreport Surrey-CVSSP system for DCASE2017 challenge task4 Xu, Yong and Kong, Qiuqiang and Wang, Wenwu and Plumbley, Mark D. https://www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge_technical_reports/DCASE2017_Xu_146.pdf https://github.com/yongxuUSTC/dcase2017_task4_cvssp Event recognition
2017 inproceedings A study on LSTM networks for polyphonic music sequence modelling Ycart, Adrien and Benetos, Emmanouil https://qmro.qmul.ac.uk/xmlui/handle/123456789/24946 http://www.eecs.qmul.ac.uk/~ay304/code/ismir17 Polyphonic music sequence modelling Inhouse & [Piano-midi.de](Piano-midi.de) RNN-LSTM Pitch shift
2018 inproceedings MUSIC TRANSFORMER:GENERATING MUSIC WITH LONG-TERM STRUCTURE Cheng{-}Zhi Anna Huang and Ashish Vaswani and Jakob Uszkoreit and Noam Shazeer and Curtis Hawthorne and Andrew M. Dai and Matthew D. Hoffman and Douglas Eck https://arxiv.org/pdf/1809.04281.pdf Polyphonic music sequence modelling [J.S. Bach chorales dataset](https://github.com/czhuang/JSB-Chorales-dataset) & [Piano-e-Competition dataset (competition history)](http://www.piano-e-competition.com/) tensor2tensor Transformer & RNN No Time Stretches & pitch transcription MIDI No
2018 inproceedings MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment Dong, Hao-Wen and Hsiao, Wen-Yi and Yang, Li-Chia and Yang, Yi-Hsuan https://arxiv.org/pdf/1709.06298.pdf https://github.com/salu133445/musegan Composition No [Lakh Pianoroll Datase](https://github.com/salu133445/musegan/blob/master/docs/dataset.md) No GAN & CNN No No No No Piano-roll 1D ReLU & Leaky ReLU No No Adam 1 Tesla K40m
2018 article Music Theory Inspired Policy Gradient Method for Piano Music Transcription Li, Juncheng and Qu, Shuhui and Metze, Florian https://nips2018creativity.github.io/doc/music_theory_inspired_policy_gradient.pdf Music Transcription CNN & RNN
2019 unpublished Generating Long Sequences with Sparse Transformers Rewon Child and Scott Gray and Alec Radford and Ilya Sutskever https://arxiv.org/pdf/1904.10509.pdf https://github.com/openai/sparse_attention audio generation Transformer No Raw Audio No
Binary file modified fig/articles_per_year.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_architecture.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_dataset.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_framework.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_task.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions frameworks.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,3 +11,4 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- PyTorch
- Tensorflow
- Theano
- tensor2tensor
1 change: 1 addition & 0 deletions publication_type.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
- Biennial Symposium for Arts and Technology
- CBMI
- CSMC
- CoRR
- Connectionist Models Summer School
- Convention of Electrical and Electronics Engineers
- DLRS
Expand Down
2 changes: 2 additions & 0 deletions tasks.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- MSR
- Manifesto
- Mixing
- Music Transcription
- Music/Noise segmentation
- Noise suppression
- Onset detection
Expand All @@ -35,3 +36,4 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- Syllable segmentation
- Transcription
- VAD
- audio generation

0 comments on commit a1e1ee4

Please sign in to comment.