Skip to content

Commit

Permalink
Add some missing fields in bib
Browse files Browse the repository at this point in the history
  • Loading branch information
ybayle committed Nov 24, 2017
1 parent 32f1996 commit ce07d48
Show file tree
Hide file tree
Showing 11 changed files with 49 additions and 10 deletions.
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -229,16 +229,16 @@ There are more papers from 2017 than any other years combined.
Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- If you are applying DL to music, there are [323 other researchers](authors.md) in your field.
- 31 tasks investigated. See the list of [tasks](tasks.md).
- 33 tasks investigated. See the list of [tasks](tasks.md).
Tasks pie chart:
![Tasks pie chart](fig/pie_chart_task.png)
- 43 datasets used. See the list of [datasets](datasets.md).
- 47 datasets used. See the list of [datasets](datasets.md).
Datasets pie chart:
![Datasets pie chart](fig/pie_chart_dataset.png)
- 25 architectures used. See the list of [architectures](architectures.md).
- 26 architectures used. See the list of [architectures](architectures.md).
Architectures pie chart:
![Architectures pie chart](fig/pie_chart_architecture.png)
- 8 frameworks used. See the list of [frameworks](frameworks.md).
- 9 frameworks used. See the list of [frameworks](frameworks.md).
Frameworks pie chart:
![Frameworks pie chart](fig/pie_chart_framework.png)
- Only 39 articles (25%) provide their source code.
Expand Down
1 change: 1 addition & 0 deletions architectures.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- MCLNN
- MLP
- NNMODFF
- No
- PNN
- RNN
- RNN-LSTM
Expand Down
4 changes: 4 additions & 0 deletions datasets.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
Please refer to the list of useful acronyms used in deep learning and music: [acronyms.md](acronyms.md).

- Inhouse
- No
- [32 Beethoven’s piano sonatas gathered from https://archive.org](https://soundcloud.com/samplernn/sets)
- [7digital](https://7digital.com)
- [ADC2004](http://labrosa.ee.columbia.edu/projects/melody/)
Expand All @@ -22,8 +23,10 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- [Homburg](http://www-ai.cs.uni-dortmund.de/audio.html)
- [IDMT-SMT-Drums](https://www.idmt.fraunhofer.de/en/business_units/m2d/smt/drums.html)
- [IRMAS](https://www.upf.edu/web/mtg/irmas)
- [JSB Chorales](ftp://i11ftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip)
- [Jamendo](http://www.mathieuramona.com/wp/data/jamendo/)
- [LMD](https://sites.google.com/site/carlossillajr/resources/the-latin-music-database-lmd)
- [LSDB](lsdb.flow-machines.com/)
- [LabROSA](http://labrosa.ee.columbia.edu/projects/melody/)
- [Lakh MIDI](https://labrosa.ee.columbia.edu/sounds/music/)
- [Last.fm](https://www.last.fm/)
Expand All @@ -39,6 +42,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- [Piano-midi.de](Piano-midi.de)
- [RWC](https://staff.aist.go.jp/m.goto/RWC-MDB/)
- [SALAMI](http://ddmal.music.mcgill.ca/research/salami/annotations)
- [Symbolic music data](http://users.cecs.anu.edu.au/~christian.walder/)
- [TIMIT](https://catalog.ldc.upenn.edu/LDC93S1)
- [TSP](http://www-mmsp.ece.mcgill.ca/Documents/Data/)
- [TUT Acoustic Scenes 2016](http://www.cs.tut.fi/~mesaros/pubs/mesaros_eusipco2016-dcase.pdf)
Expand Down
35 changes: 33 additions & 2 deletions dl4m.bib
Original file line number Diff line number Diff line change
@@ -1,19 +1,20 @@
@article{Arumugam2016,
architecture = {PNN},
author = {Arumugam, Muthumari and Kaliappan, Mala},
dataset = {[GTzan](http://marsyas.info/downloads/datasets.html)},
journal = {[Circuits and Systems](http://www.scirp.org/journal/cs/)},
link = {http://file.scirp.org/pdf/CS_2016042615054817.pdf},
number = {04},
pages = {255},
publisher = {Scientific Research Publishing},
task = {MGR & Instrument recognition},
title = {An efficient approach for segmentation, feature extraction and classification of audio signals},
volume = {7},
year = {2016}
}

@unpublished{Bammer2017,
author = {Bammer, Roswitha and Doerfler, Monika},
journal = {arXiv preprint arXiv:1706.08818},
link = {https://arxiv.org/pdf/1706.08818.pdf},
title = {Gabor frames and deep scattering networks in audio processing},
year = {2017}
Expand All @@ -39,9 +40,11 @@ @inproceedings{Bharucha1988
}

@unpublished{Briot2017,
architecture = {No},
author = {Briot, Jean-Pierre and Hadjeres, Gaëtan and Pachet, François},
journal = {arXiv preprint arXiv:1709.01620},
dataset = {[JSB Chorales](ftp://i11ftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip) & [MusicNet](https://homes.cs.washington.edu/~thickstn/musicnet.html) & [Symbolic music data](http://users.cecs.anu.edu.au/~christian.walder/) & [LSDB](lsdb.flow-machines.com/)},
link = {https://arxiv.org/pdf/1709.01620.pdf},
task = {Survey & Composition},
title = {Deep learning techniques for music generation - A survey},
year = {2017}
}
Expand Down Expand Up @@ -90,9 +93,23 @@ @unpublished{Cangea2017
}

@inproceedings{Cella2017,
activation = {No},
architecture = {No},
author = {Cella, Carmine-Emanuele},
batch = {No},
booktitle = {IWDLM},
code = {No},
dataaugmentation = {No},
dataset = {No},
dropout = {No},
epochs = {No},
framework = {No},
gpu = {No},
learningrate = {No},
link = {http://dorienherremans.com/dlm2017/papers/cella2017mli.pdf},
optimizer = {No},
reproducible = {No},
task = {Manifesto},
title = {Machine listening intelligence},
year = {2017}
}
Expand Down Expand Up @@ -258,10 +275,24 @@ @unpublished{Deng2017
}

@inproceedings{Dieleman2011,
activation = {Custom},
architecture = {CNN & MLP},
author = {Dieleman, Sander and Brakel, Philémon and Schrauwen, Benjamin},
batch = {No},
booktitle = {ISMIR},
code = {No},
dataaugmentation = {No},
dataset = {[MSD](https://labrosa.ee.columbia.edu/millionsong/)},
dropout = {0.3},
epochs = {1},
framework = {Theano},
gpu = {No},
learningrate = {0.005 & 0.0001},
link = {http://www.ismir2011.ismir.net/papers/PS6-3.pdf},
optimizer = {No},
pages = {669--674},
reproducible = {No},
task = {MGR & Artist recognition},
title = {Audio-based music classification with a pretrained convolutional network},
year = {2011}
}
Expand Down
8 changes: 4 additions & 4 deletions dl4m.tsv
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Architecture Dropout Batch Epochs Dataaugmentation Input Dimension Activation Loss Learningrate Optimizer Gpu
2016 article An efficient approach for segmentation, feature extraction and classification of audio signals Arumugam, Muthumari and Kaliappan, Mala http://file.scirp.org/pdf/CS_2016042615054817.pdf PNN
2016 article An efficient approach for segmentation, feature extraction and classification of audio signals Arumugam, Muthumari and Kaliappan, Mala http://file.scirp.org/pdf/CS_2016042615054817.pdf MGR & Instrument recognition [GTzan](http://marsyas.info/downloads/datasets.html) PNN
2017 unpublished Gabor frames and deep scattering networks in audio processing Bammer, Roswitha and Doerfler, Monika https://arxiv.org/pdf/1706.08818.pdf
2017 inproceedings Vision-based detection of acoustic timed events: A case study on clarinet note onsets Bazzica, Alessio and Van Gemert, JC and Liem, CCS and Hanjalic, A http://dorienherremans.com/dlm2017/papers/bazzica2017clarinet.pdf Onset detection [C4S](http://mmc.tudelft.nl/users/alessio-bazzica#C4S-dataset) CNN
1988 inproceedings Neural net modeling of music Bharucha, J.
2017 unpublished Deep learning techniques for music generation - A survey Briot, Jean-Pierre and Hadjeres, Gaëtan and Pachet, François https://arxiv.org/pdf/1709.01620.pdf
2017 unpublished Deep learning techniques for music generation - A survey Briot, Jean-Pierre and Hadjeres, Gaëtan and Pachet, François https://arxiv.org/pdf/1709.01620.pdf Survey & Composition [JSB Chorales](ftp://i11ftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip) & [MusicNet](https://homes.cs.washington.edu/~thickstn/musicnet.html) & [Symbolic music data](http://users.cecs.anu.edu.au/~christian.walder/) & [LSDB](lsdb.flow-machines.com/) No
2017 inproceedings JamBot: Music theory aware chord based generation of polyphonic music with LSTMs Brunner, Gino and Wang, Yuyi and Wattenhofer, Roger and Wiesendanger, Jonas https://arxiv.org/pdf/1711.07682.pdf https://github.com/brunnergino/JamBot Composition [Lakh MIDI](https://labrosa.ee.columbia.edu/sounds/music/) Keras-TensorFlow RNN-LSTM No No 4 No Softmax 0.00001 Adam 1
2002 inproceedings A supervised learning approach to musical style recognition Buzzanca, Giuseppe https://www.researchgate.net/profile/Giuseppe_Buzzanca/publication/228588086_A_supervised_learning_approach_to_musical_style_recognition/links/54b43ee90cf26833efd0109f.pdf MGR
2017 unpublished XFlow: 1D <-> 2D cross-modal deep neural networks for audiovisual classification Cangea, Cătălina and Veličković, Petar and Liò, Pietro https://arxiv.org/pdf/1709.00572.pdf
2017 inproceedings Machine listening intelligence Cella, Carmine-Emanuele http://dorienherremans.com/dlm2017/papers/cella2017mli.pdf
2017 inproceedings Machine listening intelligence Cella, Carmine-Emanuele http://dorienherremans.com/dlm2017/papers/cella2017mli.pdf No Manifesto No No No No No No No No No No No No
2017 inproceedings Deep multimodal network for multi-label classification Chen, Tanfang and Wang, Shangfei and Chen, Shiyu http://ieeexplore.ieee.org/abstract/document/8019322/ General audio classification
2017 unpublished A tutorial on deep learning for music information retrieval Choi, Keunwoo and Fazekas, György and Cho, Kyunghyun and Sandler, Mark Brian https://arxiv.org/pdf/1709.04396.pdf https://github.com/keunwoochoi/dl4mir General audio classification
2017 unpublished A comparison on audio signal preprocessing methods for deep neural networks on music tagging Choi, Keunwoo and Fazekas, György and Cho, Kyunghyun and Sandler, Mark Brian https://arxiv.org/pdf/1709.01922.pdf https://github.com/keunwoochoi/transfer_learning_music MGR [MSD](https://labrosa.ee.columbia.edu/millionsong/)
Expand All @@ -22,7 +22,7 @@ Year Entrytype Title Author Link Code Task Reproducible Dataset Framework Archit
1997 inproceedings A machine learning approach to musical style recognition Dannenberg, Roger B and Thom, Belinda and Watson, David http://repository.cmu.edu/cgi/viewcontent.cgi?article=1496&context=compsci MSR
2016 inproceedings Automatic chord estimation on seventhsbass chord vocabulary using deep neural network Deng, Junqi and Kwok, Yu-Kwong http://ieeexplore.ieee.org/abstract/document/7471677/ Chord recognition
2017 unpublished Large vocabulary automatic chord estimation using deep neural nets: Design framework, system variations and limitations Deng, Junqi and Kwok, Yu-Kwong https://arxiv.org/pdf/1709.07153.pdf Chord recognition
2011 inproceedings Audio-based music classification with a pretrained convolutional network Dieleman, Sander and Brakel, Philémon and Schrauwen, Benjamin http://www.ismir2011.ismir.net/papers/PS6-3.pdf
2011 inproceedings Audio-based music classification with a pretrained convolutional network Dieleman, Sander and Brakel, Philémon and Schrauwen, Benjamin http://www.ismir2011.ismir.net/papers/PS6-3.pdf No MGR & Artist recognition No [MSD](https://labrosa.ee.columbia.edu/millionsong/) Theano CNN & MLP 0.3 No 1 No Custom 0.005 & 0.0001 No No
2013 inproceedings Multiscale approaches to music audio feature learning Dieleman, Sander and Schrauwen, Benjamin http://ismir2013.ismir.net/wp-content/uploads/2013/09/69_Paper.pdf [Magnatagatune](http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset) Mel-spectrogram cross-entropy
2014 inproceedings End-to-end learning for music audio Dieleman, Sander and Schrauwen, Benjamin http://ieeexplore.ieee.org/abstract/document/6854950/ MGR [Magnatagatune](http://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset) CNN Raw & Mel-spectrogram
2017 unpublished Basic filters for convolutional neural networks: Training or design? Doerfler, Monika and Grill, Thomas and Bammer, Roswitha and Flexer, Arthur https://arxiv.org/pdf/1709.02291.pdf SVD Inhouse Raw & Mel-spectrogram 0.001 Adam
Expand Down
Binary file modified fig/pie_chart_architecture.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_dataset.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_framework.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified fig/pie_chart_task.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions frameworks.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- Keras
- Keras-TensorFlow
- Keras-Theano
- No
- Not disclosed
- PyTorch
- Tensorflow
Expand Down
2 changes: 2 additions & 0 deletions tasks.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- MER
- MGR
- MSR
- Manifesto
- Mixing
- Music/Noise segmentation
- Noise suppression
Expand All @@ -30,6 +31,7 @@ Please refer to the list of useful acronyms used in deep learning and music: [ac
- SVS
- Source separation
- Speaker gender recognition
- Survey
- Syllable segmentation
- Transcription
- VAD

0 comments on commit ce07d48

Please sign in to comment.