Skip to content

Commit

Permalink
merge
Browse files Browse the repository at this point in the history
  • Loading branch information
yjunechoe committed Jan 23, 2024
2 parents 2d0ade9 + fb73f8d commit a1002aa
Showing 1 changed file with 70 additions and 66 deletions.
136 changes: 70 additions & 66 deletions vignettes/articles/eyetrackingR-comparison.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -31,38 +31,43 @@ library("ggplot2")
library("eyetrackingR")
data("word_recognition")
data <- make_eyetrackingr_data(word_recognition,
participant_column = "ParticipantName",
trial_column = "Trial",
time_column = "TimeFromTrialOnset",
trackloss_column = "TrackLoss",
aoi_columns = c('Animate','Inanimate'),
treat_non_aoi_looks_as_missing = TRUE
)
data <- make_eyetrackingr_data(word_recognition,
participant_column = "ParticipantName",
trial_column = "Trial",
time_column = "TimeFromTrialOnset",
trackloss_column = "TrackLoss",
aoi_columns = c("Animate", "Inanimate"),
treat_non_aoi_looks_as_missing = TRUE
)
# subset to response window post word-onset
response_window <- subset_by_window(data,
window_start_time = 15500,
window_end_time = 21000,
rezero = FALSE)
response_window <- subset_by_window(data,
window_start_time = 15500,
window_end_time = 21000,
rezero = FALSE
)
# analyze amount of trackloss by subjects and trials
(trackloss <- trackloss_analysis(data = response_window))
# remove trials with > 25% of trackloss
response_window_clean <- clean_by_trackloss(data = response_window,
trial_prop_thresh = .25)
response_window_clean <- clean_by_trackloss(
data = response_window,
trial_prop_thresh = .25
)
# create Target condition column
response_window_clean$Target <- as.factor( ifelse(test = grepl('(Spoon|Bottle)', response_window_clean$Trial),
yes = 'Inanimate',
no = 'Animate') )
response_window_clean$Target <- as.factor(ifelse(test = grepl("(Spoon|Bottle)", response_window_clean$Trial),
yes = "Inanimate",
no = "Animate"
))
response_time <- make_time_sequence_data(response_window_clean,
time_bin_size = 100,
predictor_columns = c("Target"),
aois = "Animate",
summarize_by = "ParticipantName" )
time_bin_size = 100,
predictor_columns = c("Target"),
aois = "Animate",
summarize_by = "ParticipantName"
)
```

</details>
Expand All @@ -85,19 +90,21 @@ Additionally, we keep the following columns as they are necessary metadata for t
For simplicity, we subset `response_time` to include only the columns of interest for the cluster-based permutation analysis.

```{r}
response_time <- response_time %>%
select(Prop, Target, TimeBin, ParticipantName,
Time, AOI)
response_time <- response_time %>%
select(
Prop, Target, TimeBin, ParticipantName,
Time, AOI
)
dplyr::glimpse(response_time)
```

Lastly, we replicate the plot from the original vignette:

```{r}
# visualize timecourse
plot(response_time, predictor_column = "Target") +
plot(response_time, predictor_column = "Target") +
theme_light() +
coord_cartesian(ylim = c(0,1))
coord_cartesian(ylim = c(0, 1))
```

## CPA in `{eyetrackingR}`
Expand All @@ -110,8 +117,8 @@ Continuing with the `response_time` dataframe, we jump to the ["Bootstrapped clu
The original vignette uses the following heuristic of choosing a threshold:

```{r}
num_sub = length(unique((response_window_clean$ParticipantName)))
threshold_t = qt(p = 1 - .05/2, df = num_sub-1)
num_sub <- length(unique((response_window_clean$ParticipantName)))
threshold_t <- qt(p = 1 - .05 / 2, df = num_sub - 1)
threshold_t
```

Expand All @@ -124,48 +131,47 @@ In `{eyetrackingR}`, CPA is conducted in two steps:
1) Prepare data for CPA with `make_time_cluster_data()`:

```{r}
df_timeclust <- make_time_cluster_data(response_time,
test= "t.test", paired=TRUE,
predictor_column = "Target",
threshold = threshold_t)
df_timeclust <- make_time_cluster_data(response_time,
test = "t.test", paired = TRUE,
predictor_column = "Target",
threshold = threshold_t
)
```
This step computes the timewise statistics from the data and identifies the empirical clusters, which can be inspected with a `plot()` and `summary()` method:
```{r}
plot(df_timeclust)
plot(df_timeclust)
```
```{r}
summary(df_timeclust)
summary(df_timeclust)
```
2) Run the permutation test on the cluster data with `analyze_time_clusters()`:
```{r}
system.time({
clust_analysis <- analyze_time_clusters(
df_timeclust,
within_subj = TRUE,
paired = TRUE,
samples = 150,
quiet = TRUE
)
})
system.time({
clust_analysis <- analyze_time_clusters(
df_timeclust,
within_subj = TRUE,
paired = TRUE,
samples = 150,
quiet = TRUE
)
})
```
This simulates a null distribution of cluster-mass statistics. The output, when printed, is essentially the output of `summary(df_timeclust)` with p-values (the `Probability` column)
```{r}
clust_analysis
clust_analysis
```
The null distribution (and the extremety of the empirical clusters in that context) can be visualized with a `plot()` method:
```{r}
plot(clust_analysis)
plot(clust_analysis)
```
## CPA in `{jlmerclusterperm}`
Expand All @@ -176,10 +182,8 @@ First, we set up jlmerclusterperm. For comparability, we use a single thread:
library(jlmerclusterperm)
options("jlmerclusterperm.nthreads" = 1)
system.time({
# Note the overhead for initializing the Julia session
jlmerclusterperm_setup()
})
```

Expand All @@ -190,52 +194,52 @@ In `{jlmerclusterpm}`, CPA can also be conducted in two steps:
We first specify the formula, data, and grouping columns of the data. Instead of a paired t-test, we specify a linear model with the formula `Prop ~ Target`.

```{r}
spec <- make_jlmer_spec(
formula = Prop ~ Target,
data = response_time,
subject = "ParticipantName",
trial = "Target",
time = "TimeBin"
)
spec <- make_jlmer_spec(
formula = Prop ~ Target,
data = response_time,
subject = "ParticipantName",
trial = "Target",
time = "TimeBin"
)
```
The output prepares the data for CPA by subsetting it and applying the contrast coding schemes, among other things:
```{r}
spec
spec
```
2) Run the permutation test with the specification using `clusterpermute()`
```{r, message = FALSE, warning = FALSE}
system.time({
cpa <- clusterpermute(spec, threshold = threshold_t, nsim = 150)
})
system.time({
cpa <- clusterpermute(spec, threshold = threshold_t, nsim = 150)
})
```
The same kinds of information are returned:
```{r}
cpa
cpa
```
The different pieces of information are available for further inspection using `tidy()`, which returns the dataframe underlying the summary:
```{r}
null_distribution <- tidy(cpa$null_cluster_dists)
null_distribution
null_distribution <- tidy(cpa$null_cluster_dists)
null_distribution
```
```{r}
empirical_clusters <- tidy(cpa$empirical_clusters)
empirical_clusters
empirical_clusters <- tidy(cpa$empirical_clusters)
empirical_clusters
```
In contrast to `{eyetrackingR}`, `{jlmerclusterperm}` does not provide a custom `plot()` method. However, the same kinds of plots can be replicated with a few lines of ggplot code:
```{r}
# We flip the sign of the statistic here for visual equivalence
cpa_plot <- null_distribution %>%
cpa_plot <- null_distribution %>%
ggplot(aes(-sum_statistic)) +
geom_histogram(
aes(y = after_stat(density)),
Expand Down

0 comments on commit a1002aa

Please sign in to comment.