Online Unsupervised Feature Selection on Data Streams via Manifold and Discriminative Structure Consistency
__This repo is officical PyTorch implement of 'Online Unsupervised Feature Selection on Data Streams via Manifold and Discriminative Structure Consistency'
We use python==3.8.13
, other packages including:
torch==1.12.0+cu113
numpy==1.24.4
pandas==2.0.3
tqdm==4.66.2
timm==0.9.16
pillow==10.3.0
We also share our python environment that contains all required python packages. Please refer to the ./MDSC.yml
file.
You can import our environment using conda:
conda env create -f MDSC.yml -n MDSC
Download datasets used in our paper from:
COIL-20
USPS
EMNIST
ISOLET
DrivFace
Acoustic
Please use MDSC.py
to choose a subset of features. For example:
data = scipy.io.loadmat('example.mat')
Replace example.mat
with your data.
cd code/
python MDSC.py --m 10 \
--nanpta1 1 \
--nanpta2 1 \
--nanpta3 1 \
--nanpta4 1 \
--lr 0.2 \
--num_epochs 100 \
--M 10 \
--num_batches 10 \
Set the hyperparameters here.
We tested our code in the environment described below.
OS: Ubuntu 18.04.6 LTS
GPU: NVIDIA GeForce RTX 4090
GPU Driver Version: 535.129.03
CUDA Version: 12.2