This prototype project provides Caffe inference functionality via REST api.
Grepy is provided as Docker container. So you need to build Docker container at first.
$ cd docker/caffe_cpu $ sudo docker build -t local/caffe_cpu -f docker/caffe_cpu/Dockerfile.caffe_cpu . $ cd ../grepy_cpu $ sudo docker build -t local/grepy_cpu -f Dockerfile.grepy_cpu .
This leads following micro-service. This managed under supervisord.
[Client]--[Nginx]--[uWSGI]--[server.py(Flask)]--[pretrained CaffeNet(Caffe)]
And run Grepy container.
You can remove the container at stopping continer using --rm
option.
$ sudo docker run --rm -i -t -p 80:80 local/grepy_cpu
You need to prepare test picture. I used Caltech 101.
$ wget -O - http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz | tar xfz - $ curl --form "image=@101_ObjectCategories/airplanes/image_0001.jpg" http://(YOUR_HOST_IP_ADDRESS)/classify { "result": [ { "name": "n02690373 airliner", "score": "0.952552318573" }, { "name": "n04552348 warplane, military plane", "score": "0.0273641180247" }, { "name": "n04008634 projectile, missile", "score": "0.00465240329504" } ] }