Skip to content

Anabik/alienMarkovNetworks

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Alien Markov Networks: experiments in MRFs for image segmentation

Please report errors in these instructions

This library contains a set of python tools for performing image segmentation using Markov Random Fields (MRFS) and/or Conditional Random Fields (CRFs).

The default matrix orientation is numberExamples x numberDimensions, which is in line with scikit learn and matlab.

The first aim is to get some standard results on the MSRC data set. The target platform is Ubuntu 13.04. By far the easiest way to use the software is on a VM using vagrant. If you're running Ubuntu 13.04, you could try running parts of the provisioning script in the vagrant directory (bootstrap.sh) to install the necessary dependencies.

[MSRC data is available here] (http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx)

To Install on Machine

Clone the repo.

Install some needed dependencies:

apt-get update
apt-get install -y emacs git-core python-pip python-dev \
    python-numpy python-matplotlib python-scipy python-pandas \
    libboost-dev python-opencv
pip install cython scikit-learn scikit-image --upgrade

Get a local installation of the slic python library:

cd mylibdir
git clone https://github.com/amueller/slic-python.git
cd slic-python
make

Build the cython components:

cd alienMarkovNetworks/maxflow
python setup.py build_ext --inplace

Add these libraries to your python path, possibly in your .bashrc or the like:

echo 'export PYTHONPATH="$PYTHONPATH":mylibdir/slic-python:mycodedir/alienMarkovNetworks/maxflow' \
    >> ~/.bashrc

To Install on VM

NOTE: vagrant uses virtualbox by default. For me this required switching virtualisation on in the bios.

Run these commands:

  sudo apt-get install vagrant
  vagrant box add raring64 \
         http://cloud-images.ubuntu.com/vagrant/raring/current/raring-server-cloudimg-amd64-vagrant-disk1.box
  git clone https://github.com/RockStarCoders/alienMarkovNetworks.git
  cd alienMarkovNetworks/vagrant
  vagrant up
  vagrant ssh
  cd /vagrant/alienMarkovNetworks/

Go get some coffee, and after that you should be up and running inside the VM.

On the host machine, you can provide the MSRC data to the VM as follows:

  cd alienMarkovNetworks
  ./createMSRCPartition.sh -c  /path/to/MSRC_ObjCategImageDatabase_v2 \
      MSRC_dataSplit_Shotton/Train.txt \
      MSRC_dataSplit_Shotton/Validation.txt \
      MSRC_dataSplit_Shotton/Test.txt  \
      vagrant/msrcData

RUN

These instructions will allow you to reproduce a result on the MSRC data set.

  1. Download the [MSRC data] (http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx). Let's call that path DATAPATH.
  2. Copy it to partitioned sub-directories:
  mkdir DATAPATH/msrcPartitioned
  cd alienMarkovNetworks
  ./createMSRCPartition.sh -c  DATAPATH/MSRC_ObjCategImageDatabase_v2 \
      MSRC_dataSplit_Shotton/Train.txt \
      MSRC_dataSplit_Shotton/Validation.txt \
      MSRC_dataSplit_Shotton/Test.txt  \
      DATAPATH/msrcPartitioned
  1. Run the following script:
mkdir OUTPUTDIR
./reproduceMSRC.sh DATAPATH/msrcPartitioned OUTPUTDIR 8

The number 8 above is the number of cores to use. Limiting factor is RAM. I have 32 GB RAM and 8 is good for me. In OUTPUTDIR this produces labelled images, as well as accuracy metrics to standard out.

About

Using MRFs and CRFs for computer vision problems.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 66.0%
  • C++ 24.7%
  • Shell 5.9%
  • C 1.5%
  • Ruby 1.3%
  • MATLAB 0.5%
  • Makefile 0.1%