-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
use official katex css/js; initialize high-dim prob
- Loading branch information
1 parent
834c100
commit 132832c
Showing
4 changed files
with
140 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
# High-Dimensional Probability | ||
|
||
!!! info "Note taken on PKU *High-Dimensional Probability*, 2024 Fall, [Link](https://www.math.pku.edu.cn/teachers/zhzhang/hdp.html)" | ||
|
||
- [Lecture 1](lec1.md), introduction | ||
- ... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# Introduction | ||
|
||
!!! info "Lecture 1, 2024.9.10, [Link](https://www.math.pku.edu.cn/teachers/zhzhang/videos/09-10.mp4)" | ||
|
||
## Overview | ||
|
||
<div style="text-align:center;"> | ||
<img src="../../imgs/prob/high-dim/overview.drawio.png" alt="overview" style="margin: 0 auto; zoom: 80%;"/> | ||
</div> | ||
|
||
在高维中,需要刻画两个重要问题: | ||
|
||
- 维数灾难 (Curse of Dimensionality) | ||
- 高维特性 (Surprises in High Space) | ||
|
||
用来分析的两种常用工具: | ||
|
||
- 期望 (Expectation) | ||
- 以高概率存在 (with high probability) | ||
|
||
研究对象:向量 -> 矩阵 -> 函数 | ||
|
||
数据假设:独立同分布 (i.i.d.) -> 鞅差 (Martingale Difference) -> 马尔科夫链 (Markov Chain) | ||
|
||
教材:*High-Dimensional Probability* by Roman Vershynin | ||
|
||
推荐资料: | ||
|
||
- 统计方面:*High-Dimensional Statistics* by Martin Wainwright | ||
- 理论计算机:*The Probabilitic Method* by Alon and Spencer | ||
- 更有趣味,偏向算法设计:*Probability and Computing* by Mitzenmacher and Upfal | ||
|
||
比较 $f(n)$ 和 $g(n)$: | ||
|
||
- $f(n) = O(g(n))$:$\exists\; c > 0$, $f(n) \leqslant c g(n)$ ($n$ 足够大) | ||
- $f(n) = \Omega(g(n))$:$\exists\; c > 0$, $f(n) \geqslant c g(n)$ ($n$ 足够大) | ||
- $f(n) = \Theta(g(n))$:$\exists\; c_1, c_2 > 0$, $c_1 g(n) \leqslant f(n) \leqslant c_2 g(n)$ ($n$ 足够大) | ||
> 即 $f(n) = O(g(n))$ 且 $f(n) = \Omega(g(n))$ | ||
- $f(n) = o(g(n))$:$f(n) / g(n) \to 0$ ($n \to \infty$) | ||
- $f(n) \sim g(n)$:$f(n) / g(n) \to 1$ ($n \to \infty$) | ||
|
||
!!! example "Example 1" | ||
先声明以下基本定义与定理:对于 $z_1, z_2, \ldots, z_n \in \mathbb{R}$ | ||
|
||
- 凸组合 (convex combination):$\sum_{i=1}^n \lambda_i z_i$, $\lambda_i\geqslant 0$, $\sum_{i=1}^n \lambda_i=1$ | ||
- 凸包 (convex hull):$T\subseteq \mathbb{R}^n$, $\mathrm{conv}(T):=\{\text{convex combinations of }z_1, \cdots, z_m\in T, \forall m\in \mathbb{N}\}$ | ||
- Caratheodory's Theorm: 对于 $T\subseteq \mathbb{R}^n$,任意 $\mathrm{conv}(T)$ 中的点,都可以被表示为 $n+1$ 个 $T$ 中的点的凸组合 | ||
|
||
尝试证明如下定理: | ||
|
||
!!! abstract "Theorem" | ||
考虑 $T\subseteq \mathbb{R}^n$,令 $T$ 的直径和每个点都被 1 bound,即: | ||
|
||
- 直径 (diameter) $\mathrm{diam}(T)=\sup\limits_{x, y\in T} \|x-y\|_2\leqslant 1$ | ||
- $\|x\|_2\leqslant 1$,$\forall x\in T$ | ||
|
||
则 $\forall x\in \mathrm{conv}(T)$,$\forall k\in \mathbb{N}^+$, 我们能够找到 $x_1, \cdots, x_k\in T$ s.t. | ||
|
||
$$ | ||
\left\| x - \frac{1}{k}\sum_{i=1}^k x_i \right\|_2 \leqslant \frac{1}{\sqrt{k}} | ||
$$ | ||
|
||
> 使用 $k$ 个点估计 $x$ 的误差不受空间维度 $n$ 影响,仅与 $k$ 有关 | ||
|
||
证明思路:考虑 $k$ 个随机点 $Z_1, \cdots, Z_k\in T$,通过对这个随机变量的构造,使其满足 $\mathbb{E}\|x - 1/k \sum Z_i\|_2^2 \leqslant 1/k$,则说明存在 $Z_1, \cdots, Z_k$ 的某组采样值 $x_1, \cdots, x_k$ 满足定理要求 | ||
|
||
??? general "Proof" | ||
根据 Caretheodory's Theorm,$\forall x\in \mathrm{conv}(T)$,$\exists y_1, \cdots, Y_{n+1}\in T$,$\lambda_1, \cdots, \lambda_{n+1}\geqslant 0$,$\sum_{i=1}^{n+1}\lambda_i=1$,s.t. | ||
$$ | ||
x = \sum_{i=1}^{n+1}\lambda_i y_i | ||
$$ | ||
|
||
构造随机变量 $Z$,其概率分布 $P$ 满足 $P(Z=y_i)=\lambda_i$,则 | ||
|
||
$$ | ||
\mathbb{E}Z = \sum_{i=1}^{n+1}\lambda_i y_i | ||
$$ | ||
|
||
考虑 $k$ 个与 $Z$ 独立同分布的随机变量 $Z_1, \cdots, Z_k$,则 | ||
|
||
$$ | ||
\begin{aligned} | ||
\mathbb{E}\left\| x - \frac{1}{k}\sum_{i=1}^k Z_i \right\|_2^2 | ||
&= \mathbb{E}\left\| \frac{1}{k} \sum_{i=1}^{k} (x - Z_i) \right\|_2^2 \\ | ||
&= \frac{1}{k^2}\mathbb{E}\left\| \sum_{i=1}^{k} (\mathbb{E}Z_i - Z_i) \right\|_2^2 \\ | ||
&= \frac{1}{k^2}\sum_{i=1}^{k} \mathbb{E}\left\| Z_i - \mathbb{E}Z_i \right\|_2^2 - \frac{2}{k^2}\sum_{1\leqslant i < j \leqslant n} \underbrace{\mathbb{E}(Z_i - \mathbb{E}Z_i )^{\top} (Z_j - \mathbb{E}Z_j )}_{\mathrm{Cov}(Z_i, Z_j)} \\ | ||
&= \frac{1}{k^2}\sum_{i=1}^{k} \mathbb{E}\left\| Z_i - \mathbb{E}Z_i \right\|_2^2 \\ | ||
\end{aligned} | ||
$$ | ||
|
||
注意由于 $Z_i, Z_j$ 相互独立,$\mathrm{Cov}(Z_i, Z_j)=0$。而 | ||
|
||
$$ | ||
\mathbb{E}\left\| Z_i - \mathbb{E}Z_i \right\|_2^2 | ||
= \mathbb{E}\|Z\|_2^2 - \|\mathbb{E}Z\|_2^2 | ||
\leqslant \mathbb{E}\|Z\|_2^2 | ||
= \sum_{j=1}^{n+1}\lambda_j \|y_j\|_2^2 | ||
\leqslant \sum_{j=1}^{n+1}\lambda_j | ||
= 1 | ||
$$ | ||
|
||
因此就有 | ||
$$ | ||
\mathbb{E}\left\| x - \frac{1}{k}\sum_{i=1}^k Z_i \right\|_2^2 | ||
\leqslant \frac{1}{k^2} \cdot k | ||
= \frac{1}{k} | ||
\Rightarrow | ||
\exists\: x_1, \cdots, x_k\in T, \text{s.t.} \left\| x - \frac{1}{k}\sum_{i=1}^k x_i \right\|_2 \leqslant \frac{1}{\sqrt{k}} | ||
$$ | ||
|
||
!!! question "作业" | ||
对于 $x_1, \cdots, x_n\in \mathbb{R}^n$, $\|x_i\|_2\leqslant 1$, 考虑任意 $p_1, \cdots, p_n\in [0, 1]$, $w=p_1x_1 + \cdots + p_nx_n$ | ||
|
||
> 注意,$\sum p_i$ 不一定为 1 了 | ||
|
||
(1) 求证存在 $\epsilon_1, \cdots, \epsilon_n\in \{0, 1\}$ 使得 $v=\epsilon_1x_1 + \cdots \epsilon_nx_n$ 满足 | ||
|
||
$$ | ||
\|w-v\|_2 \leqslant \frac{\sqrt{n}}{2} | ||
$$ | ||
|
||
(2) 找到一个复杂度为 $O(n^2)$ (或更低)的确定性算法解出可行的 $\epsilon_1, \cdots, \epsilon_n$ | ||
|
||
|
||
Timestamp: 0:00:00-1:03:47 | ||
|
||
!!! warning "本页面还在建设中" |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,6 +11,9 @@ nav: | |
- index.md | ||
- Courses: | ||
- courses/index.md | ||
- High-Dimensional Probability: | ||
- courses/high-dim-prob/index.md | ||
- Lecture 1: courses/high-dim-prob/lec1.md | ||
- Theory of Computation: | ||
- courses/toc/index.md | ||
- Sets, Relations and Languages: courses/toc/languages.md | ||
|
@@ -189,12 +192,12 @@ markdown_extensions: | |
# - sane_lists | ||
|
||
extra_css: | ||
- https://cdn.tonycrane.cc/utils/katex.min.css | ||
- https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.css | ||
- https://fonts.googleapis.com/css?family=Roboto:500,500i,600,600i&display=fallback | ||
- css/custom.css | ||
|
||
extra_javascript: | ||
- https://cdn.tonycrane.cc/utils/katex.min.js | ||
- https://cdn.jsdelivr.net/npm/[email protected]/dist/katex.min.js | ||
- js/katex.js | ||
- js/heti.js | ||
|
||
|