Skip to content

Commit

Permalink
multiplicative neutral element -> unity element
Browse files Browse the repository at this point in the history
and "neutral element" -> "zero element" (in the context of rings)
  • Loading branch information
avekens committed Jan 18, 2025
1 parent f69068c commit 3396ff3
Showing 1 changed file with 20 additions and 21 deletions.
41 changes: 20 additions & 21 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -256090,7 +256090,7 @@ nonzero elements form a group under multiplication (from which it
${
$d R s $.
primefld0cl.1 $e |- .0. = ( 0g ` R ) $.
$( The prime field contains the neutral element of the division ring.
$( The prime field contains the zero element of the division ring.
(Contributed by Thierry Arnoux, 22-Aug-2023.) $)
primefld0cl $p |- ( R e. DivRing -> .0. e. |^| ( SubDRing ` R ) ) $=
( vs cdr wcel csdrg cfv csubg wss c0 wne cv wi csubrg cress co issdrg syl
Expand All @@ -256102,8 +256102,8 @@ nonzero elements form a group under multiplication (from which it
${
$d R s $.
primefld1cl.1 $e |- .1. = ( 1r ` R ) $.
$( The prime field contains the multiplicative neutral element of the
division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.) $)
$( The prime field contains the unity element of the division ring.
(Contributed by Thierry Arnoux, 22-Aug-2023.) $)
primefld1cl $p |- ( R e. DivRing -> .1. e. |^| ( SubDRing ` R ) ) $=
( vs cdr wcel csdrg cfv cint csubrg wss c0 wne cv wi cress issdrg simp2bi
co a1i ssrdv cbs eqid sdrgid ne0d subrgint syl2anc subrg1cl syl ) AEFZAGH
Expand Down Expand Up @@ -265360,15 +265360,15 @@ According to Wikipedia ("Integer", 25-May-2019,
( cvv wcel cmul czring cmulr cfv wceq zex ccnfld df-zring cnfldmul ressmulr
cz ax-mp ) MABCDEFGHMIDCAJKLN $.

$( The neutral element of the ring of integers. (Contributed by Thierry
Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) $)
$( The zero element of the ring of integers. (Contributed by Thierry Arnoux,
1-Nov-2017.) (Revised by AV, 9-Jun-2019.) $)
zring0 $p |- 0 = ( 0g ` ZZring ) $=
( ccnfld cmnd wcel cc0 cz wss czring c0g cfv wceq ccrg crg crngring ringmnd
cc cncrng mp2b 0z zsscn df-zring cnfldbas cnfld0 ress0g mp3an ) ABCZDECEOFD
GHIJAKCALCUEPAMANQRSEOAGDTUAUBUCUD $.

$( The multiplicative neutral element of the ring of integers. (Contributed
by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) $)
$( The unity element of the ring of integers. (Contributed by Thierry
Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) $)
zring1 $p |- 1 = ( 1r ` ZZring ) $=
( cz ccnfld csubrg cfv wcel c1 czring cur wceq zsubrg df-zring cnfld1 ax-mp
subrg1 ) ABCDEFGHDIJABGFKLNM $.
Expand Down Expand Up @@ -267117,9 +267117,8 @@ According to Wikipedia ("Integer", 25-May-2019,
zrhpsgnevpm.y $e |- Y = ( ZRHom ` R ) $.
zrhpsgnevpm.s $e |- S = ( pmSgn ` N ) $.
zrhpsgnevpm.o $e |- .1. = ( 1r ` R ) $.
$( The sign of an even permutation embedded into a ring is the
multiplicative neutral element of the ring. (Contributed by SO,
9-Jul-2018.) $)
$( The sign of an even permutation embedded into a ring is the unity
element of the ring. (Contributed by SO, 9-Jul-2018.) $)
zrhpsgnevpm $p |- ( ( R e. Ring /\ N e. Fin /\ F e. ( pmEven ` N ) ) ->
( ( Y o. S ) ` F ) = .1. ) $=
( crg wcel cfn cevpm cfv w3a c1 cbs co wceq eqid ccom csymg cmgp cneg cpr
Expand All @@ -267132,8 +267131,8 @@ According to Wikipedia ("Integer", 25-May-2019,
zrhpsgnodpm.p $e |- P = ( Base ` ( SymGrp ` N ) ) $.
zrhpsgnodpm.i $e |- I = ( invg ` R ) $.
$( The sign of an odd permutation embedded into a ring is the additive
inverse of the multiplicative neutral element of the ring. (Contributed
by SO, 9-Jul-2018.) $)
inverse of the unity element of the ring. (Contributed by SO,
9-Jul-2018.) $)
zrhpsgnodpm $p |- ( ( R e. Ring /\ N e. Fin /\ F e. ( P \
( pmEven ` N ) ) ) -> ( ( Y o. S ) ` F ) = ( I ` .1. ) ) $=
( wcel cfv c1 co wceq eqid czring crg cfn cevpm cdif w3a ccom cneg ccnfld
Expand Down Expand Up @@ -267451,15 +267450,15 @@ According to Wikipedia ("Integer", 25-May-2019,
( cr cvv wcel cmul crefld cmulr wceq reex ccnfld df-refld cnfldmul ressmulr
cfv ax-mp ) ABCDEFMGHAIEDBJKLN $.

$( The neutral element of the field of reals. (Contributed by Thierry
Arnoux, 1-Nov-2017.) $)
$( The zero element of the field of reals. (Contributed by Thierry Arnoux,
1-Nov-2017.) $)
re0g $p |- 0 = ( 0g ` RRfld ) $=
( ccnfld cmnd wcel cc0 cr wss crefld c0g cfv wceq ccrg crg crngring ringmnd
cc cncrng mp2b 0re ax-resscn df-refld cnfldbas cnfld0 ress0g mp3an ) ABCZDE
CEOFDGHIJAKCALCUEPAMANQRSEOAGDTUAUBUCUD $.

$( The multiplicative neutral element of the field of reals. (Contributed by
Thierry Arnoux, 1-Nov-2017.) $)
$( The unity element of the field of reals. (Contributed by Thierry Arnoux,
1-Nov-2017.) $)
re1r $p |- 1 = ( 1r ` RRfld ) $=
( cr ccnfld csubrg cfv wcel c1 crefld cur wceq cdr resubdrg simpli df-refld
cnfld1 subrg1 ax-mp ) ABCDEZFGHDIQGJEKLABGFMNOP $.
Expand Down Expand Up @@ -269195,8 +269194,8 @@ with modules (over rings) instead of vector spaces (over fields) allows for a
are usually regarded as "over a ring" in this part.

Unless otherwise stated, the rings of scalars need not be commutative
(see ~ df-cring ), but the existence of a multiplicative neutral element is
always assumed (our rings are unital, see ~ df-ring ).
(see ~ df-cring ), but the existence of a unity element is always assumed
(our rings are unital, see ~ df-ring ).

For readers knowing vector spaces but unfamiliar with modules: the elements
of a module are still called "vectors" and they still form a group under
Expand Down Expand Up @@ -492583,8 +492582,8 @@ such that every prime ideal contains a prime element (this is a
sral1r.a $e |- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) $.
sral1r.1 $e |- ( ph -> .1. = ( 1r ` W ) ) $.
sral1r.s $e |- ( ph -> S C_ ( Base ` W ) ) $.
$( The multiplicative neutral element of a subring algebra. (Contributed
by Thierry Arnoux, 24-Jul-2023.) $)
$( The unity element of a subring algebra. (Contributed by Thierry Arnoux,
24-Jul-2023.) $)
sra1r $p |- ( ph -> .1. = ( 1r ` A ) ) $=
( vx vy cur cfv cbs eqidd srabase cv wcel wa cmulr sramulr oveqdr eqtrd
rngidpropd ) ADEKLBKLGAIJEMLZEBAUDNABCEFHOAIPUDQJPUDQRIJESLBSLABCEFHTUAUC
Expand Down Expand Up @@ -674969,7 +674968,7 @@ is in the span of P(i)(X), so there is an R-linear combination of

${
$d A x y $.
$( A limit ordinal is either the proper class of ordinals or some non-zero
$( A limit ordinal is either the proper class of ordinals or some nonzero
product with omega. (Contributed by RP, 8-Jan-2025.) $)
dflim5 $p |- ( Lim A <-> ( A = On \/
E. x e. ( On \ 1o ) A = ( _om .o x ) ) ) $=
Expand Down

0 comments on commit 3396ff3

Please sign in to comment.