Skip to content

Commit

Permalink
Intuitionize recent set.mm theorems (metamath#3750)
Browse files Browse the repository at this point in the history
* Add phpeqd to iset.mm

Stated as in set.mm.  The proof is immediate from fisseneq which we
already have.

* Add phphashd and phphashrd to mmil.html

* Add neqcomd to iset.mm

Copied without change from set.mm.

* Add hashelne0d to mmil.html

* add hash1elsn to mmil.html

* Add gcdmultipled to iset.mm

Copied without change from set.mm

* Add dvdsgcdidd to iset.mm

Stated as in set.mm.  The proof needs a very small amount of
intuitionizing but is basically the set.mm proof.

* Add rspcime to iset.mm

Copied without change from set.mm

* Add elrnmptdv to iset.mm

Copied without change from set.mm

* Add elrnmpt2d to iset.mm

Copied without change from set.mm

* Add enpr2d to iset.mm

Copied without change from set.mm
  • Loading branch information
jkingdon authored Jan 7, 2024
1 parent de46203 commit f42e3e5
Show file tree
Hide file tree
Showing 2 changed files with 109 additions and 0 deletions.
91 changes: 91 additions & 0 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -18169,6 +18169,13 @@ This law is thought to have originated with Aristotle (_Metaphysics_,
( wceq eqcom mpbi ) ABDBADCABEF $.
$}

${
neqcomd.1 $e |- ( ph -> -. A = B ) $.
$( Commute an inequality. (Contributed by Rohan Ridenour, 3-Aug-2023.) $)
neqcomd $p |- ( ph -> -. B = A ) $=
( wceq eqcom sylnib ) ABCECBEDBCFG $.
$}

${
eqcomd.1 $e |- ( ph -> A = B ) $.
$( Deduction from commutative law for class equality. (Contributed by NM,
Expand Down Expand Up @@ -23933,6 +23940,16 @@ deduction version (Contributed by Thierry Arnoux, 30-Jan-2017.) $)
( wrex rspcedv mpd ) ACBDFJIABCDEFGHKL $.
$}

${
$d x ph $. $d x B $. $d x A $.
rspcime.1 $e |- ( ( ph /\ x = A ) -> ps ) $.
rspcime.2 $e |- ( ph -> A e. B ) $.
$( Prove a restricted existential. (Contributed by Rohan Ridenour,
3-Aug-2023.) $)
rspcime $p |- ( ph -> E. x e. B ps ) $=
( cv wceq wa simpl 2thd id rspcedvd ) ABACDEGACHDIZJBAFAOKLAMN $.
$}

${
$d x y A $. $d x B $. $d x C $. $d x ps $. $d x ch $.
rspceaimv.1 $e |- ( x = A -> ( ph <-> ps ) ) $.
Expand Down Expand Up @@ -42746,6 +42763,29 @@ is most interesting when the natural number is a successor (as seen in
NRABGOABCDEHFPQ $.
$}

${
$d D x $. $d x A $. $d x C $. $d x ph $.
elrnmptdv.1 $e |- F = ( x e. A |-> B ) $.
elrnmptdv.2 $e |- ( ph -> C e. A ) $.
elrnmptdv.3 $e |- ( ph -> D e. V ) $.
elrnmptdv.4 $e |- ( ( ph /\ x = C ) -> D = B ) $.
$( Elementhood in the range of a function in maps-to notation, deduction
form. (Contributed by Rohan Ridenour, 3-Aug-2023.) $)
elrnmptdv $p |- ( ph -> D e. ran F ) $=
( crn wcel wceq wrex rspcime wb elrnmpt syl mpbird ) AFGMNZFDOZBCPZAUCBEC
LJQAFHNUBUDRKBCDFGHISTUA $.
$}

${
$d x C $.
elrnmpt2d.1 $e |- F = ( x e. A |-> B ) $.
elrnmpt2d.2 $e |- ( ph -> C e. ran F ) $.
$( Elementhood in the range of a function in maps-to notation, deduction
form. (Contributed by Rohan Ridenour, 3-Aug-2023.) $)
elrnmpt2d $p |- ( ph -> E. x e. A C = B ) $=
( crn wcel wceq wrex elrnmpt ibi syl ) AEFIZJZEDKBCLZHQRBCDEFPGMNO $.
$}

$( The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1]
p. 36. (Contributed by NM, 4-Jul-1994.) $)
rn0 $p |- ran (/) = (/) $=
Expand Down Expand Up @@ -64120,6 +64160,20 @@ the first case of his notation (simple exponentiation) and subscript it
UEUFUGUHUIUJUK $.
$}

${
enpr2d.1 $e |- ( ph -> A e. C ) $.
enpr2d.2 $e |- ( ph -> B e. D ) $.
enpr2d.3 $e |- ( ph -> -. A = B ) $.
$( A pair with distinct elements is equinumerous to ordinal two.
(Contributed by Rohan Ridenour, 3-Aug-2023.) $)
enpr2d $p |- ( ph -> { A , B } ~~ 2o ) $=
( c1o cen csn cun wbr cin c0 wceq wcel syl con0 1on cpr csuc ensn1g en2sn
c2o sylancl wne neqned disjsn2 wn onirri a1i disjsn sylibr syl22anc df-pr
unen df-suc 3brtr4g df-2o breqtrrdi ) ABCUAZIUBZUEJABKZCKZLZIIKZLZVBVCJAV
DIJMZVEVGJMZVDVENOPZIVGNOPZVFVHJMABDQVIFBDUCRACEQISQVJGTCIESUDUFABCUGVKAB
CHUHBCUIRAIIQUJZVLVMAITUKULIIUMUNVDIVEVGUQUOBCUPIURUSUTVA $.
$}

$( A subset of a set dominated by ` _om ` is dominated by ` _om ` .
(Contributed by Thierry Arnoux, 31-Jan-2017.) $)
ssct $p |- ( ( A C_ B /\ B ~<_ _om ) -> A ~<_ _om ) $=
Expand Down Expand Up @@ -66084,6 +66138,18 @@ texts assume excluded middle (in which case the two intersection
XA $.
$}

${
phpeqd.1 $e |- ( ph -> A e. Fin ) $.
phpeqd.2 $e |- ( ph -> B C_ A ) $.
phpeqd.3 $e |- ( ph -> A ~~ B ) $.
$( Corollary of the Pigeonhole Principle using equality. Strengthening of
~ phpm expressed without negation. (Contributed by Rohan Ridenour,
3-Aug-2023.) $)
phpeqd $p |- ( ph -> A = B ) $=
( cfn wcel wss cen wbr wceq w3a ensymb fisseneq syl3an3br eqcomd syl3anc
) ABGHZCBIZBCJKZBCLDEFSTUAMCBUASTCBJKCBLCBNCBOPQR $.
$}

${
$d A w x y z $. $d ph w y z $. $d ps w y z $.
ssfirab.a $e |- ( ph -> A e. Fin ) $.
Expand Down Expand Up @@ -125102,6 +125168,31 @@ which defines the set we are taking the supremum of must (a) be true at
( cz wcel c1 cgcd co wceq 1z gcdcom mpan gcd1 eqtrd ) ABCZDAEFZADEFZDDBCMNO
GHDAIJAKL $.

${
gcdmultipled.1 $e |- ( ph -> M e. NN0 ) $.
gcdmultipled.2 $e |- ( ph -> N e. ZZ ) $.
$( The greatest common divisor of a nonnegative integer ` M ` and a
multiple of it is ` M ` itself. (Contributed by Rohan Ridenour,
3-Aug-2023.) $)
gcdmultipled $p |- ( ph -> ( M gcd ( N x. M ) ) = M ) $=
( cc0 cgcd co cmul caddc cz wcel wceq nn0zd 0zd gcdaddm syl3anc nn0gcdid0
cn0 syl zmulcld zcnd addid2d oveq2d 3eqtr3rd ) ABFGHZBFCBIHZJHZGHZBBUGGHA
CKLBKLFKLUFUIMEABDNZAOCBFPQABSLUFBMDBRTAUHUGBGAUGAUGACBEUJUAUBUCUDUE $.
$}

${
dvdsgcdidd.1 $e |- ( ph -> M e. NN ) $.
dvdsgcdidd.2 $e |- ( ph -> N e. ZZ ) $.
dvdsgcdidd.3 $e |- ( ph -> M || N ) $.
$( The greatest common divisor of a positive integer and another integer it
divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) $)
dvdsgcdidd $p |- ( ph -> ( M gcd N ) = M ) $=
( cdiv co cmul cgcd zcnd nncnd nnap0d divcanap1d oveq2d nnnn0d cdvds wcel
wbr cz cc0 wne wb nnzd nnne0d dvdsval2 syl3anc mpbid gcdmultipled eqtr3d
) ABCBGHZBIHZJHBCJHBAULCBJACBACEKABDLABDMNOABUKABDPABCQSZUKTRZFABTRBUAUBC
TRUMUNUCABDUDABDUEEBCUFUGUHUIUJ $.
$}

$( The greatest common divisor of six and four is two. To calculate this
gcd, a simple form of Euclid's algorithm is used:
` ( 6 gcd 4 ) = ( ( 4 + 2 ) gcd 4 ) = ( 2 gcd 4 ) ` and
Expand Down
18 changes: 18 additions & 0 deletions mmil.raw.html
Original file line number Diff line number Diff line change
Expand Up @@ -8072,11 +8072,23 @@
<TD>~ fihashneq0</TD>
</TR>

<tr>
<td>hashelne0d</td>
<td><i>none</i></td>
<td>would be easy to prove if ` A e. V ` is changed to ` A e. Fin `</td>
</tr>

<TR>
<TD>hashen1</TD>
<TD>~ fihashen1</TD>
</TR>

<tr>
<td>hash1elsn</td>
<td><i>none</i></td>
<td>would be easy to prove if ` A e. V ` is changed to ` A e. Fin `</td>
</tr>

<TR>
<TD>hashrabrsn</TD>
<TD><I>none</I></TD>
Expand Down Expand Up @@ -8366,6 +8378,12 @@
to ` _om ~<_ A ` but the set.mm proof does not work as is.</TD>
</TR>

<tr>
<td>phphashd , phphashrd</td>
<td><i>none</i></td>
<td>would appear to need hashclb or some other way of showing that
the subset is finite</td>
</tr>

<TR>
<TD>seqcoll</TD>
Expand Down

0 comments on commit f42e3e5

Please sign in to comment.