Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added examples for tensorflow types in Datatypes and IO section #1739

Merged
merged 7 commits into from
Oct 17, 2024
56 changes: 56 additions & 0 deletions examples/data_types_and_io/data_types_and_io/tensorflow_type.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# Import necessary libraries and modules

from flytekit import task, workflow
from flytekit.types.directory import TFRecordsDirectory
from flytekit.types.file import TFRecordFile

custom_image = ImageSpec(
packages=["tensorflow", "tensorflow-datasets", "flytekitplugins-kftensorflow"],
registry="ghcr.io/flyteorg",
)

if custom_image.is_container():
import tensorflow as tf

# TensorFlow Model
@task
def train_model() -> tf.keras.Model:
model = tf.keras.Sequential(
[tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dense(10, activation="softmax")]
)
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return model

@task
def evaluate_model(model: tf.keras.Model, x: tf.Tensor, y: tf.Tensor) -> float:
loss, accuracy = model.evaluate(x, y)
return accuracy

@workflow
def training_workflow(x: tf.Tensor, y: tf.Tensor) -> float:
model = train_model()
return evaluate_model(model=model, x=x, y=y)

# TFRecord Files
@task
def process_tfrecord(file: TFRecordFile) -> int:
count = 0
for record in tf.data.TFRecordDataset(file):
count += 1
return count

@workflow
def tfrecord_workflow(file: TFRecordFile) -> int:
return process_tfrecord(file=file)

# TFRecord Directories
@task
def process_tfrecords_dir(dir: TFRecordsDirectory) -> int:
count = 0
for record in tf.data.TFRecordDataset(dir.path):
count += 1
return count

@workflow
def tfrecords_dir_workflow(dir: TFRecordsDirectory) -> int:
return process_tfrecords_dir(dir=dir)
Loading