Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Python3 incompatibility in PatternGenerator #62

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions imagen/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -1387,7 +1387,7 @@ def _create_frequency_indices(self):

# calculate the discrete frequencies possible for the given sample rate.
sample_rate = self.signal.sample_rate
available_frequency_range = np.fft.fftfreq(sample_rate, d=1.0/sample_rate)[0:sample_rate/2]
available_frequency_range = np.fft.fftfreq(sample_rate, d=1.0/sample_rate)[0:sample_rate//2]

if not available_frequency_range.min() <= self.min_frequency or not available_frequency_range.max() >= self.max_frequency:
raise ValueError("Specified frequency interval [%s:%s] is unavailable, available range is [%s:%s]. Adjust to these frequencies or modify the sample rate of the TimeSeries object." %(self.min_frequency, self.max_frequency, available_frequency_range.min(), available_frequency_range.max()))
Expand Down Expand Up @@ -1435,7 +1435,7 @@ def _get_row_amplitudes(self):
else:
smoothed_window = signal_window[0:sample_rate]

amplitudes = (np.abs(np.fft.rfft(smoothed_window))[0:sample_rate/2] + self.offset) * self.scale
amplitudes = (np.abs(np.fft.rfft(smoothed_window))[0:sample_rate//2] + self.offset) * self.scale

for index in range(0, self._sheet_dimensions[0]-2):
start_frequency = self.frequency_spacing[index]
Expand Down
8 changes: 4 additions & 4 deletions imagen/patterngenerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@ def __getitem__(self, coords):
value_dims = {'value_dimensions':[self.z]} if self.z else value_dims
elif self.num_channels() in [3,4]:
raster = RGB
data = np.dstack(self.channels().values()[1:])
data = np.dstack(list(self.channels().values())[1:])

image = raster(data, bounds=self.bounds,
**dict(group=self.group,
Expand Down Expand Up @@ -216,7 +216,7 @@ def _setup_xy(self,bounds,xdensity,ydensity,x,y,orientation):
density (or rows and cols), and transforms them according to
x, y, and orientation.
"""
self.debug("bounds=%s, xdensity=%s, ydensity=%s, x=%s, y=%s, orientation=%s",bounds,xdensity,ydensity,x,y,orientation)
self.param.debug("bounds=%s, xdensity=%s, ydensity=%s, x=%s, y=%s, orientation=%s",bounds,xdensity,ydensity,x,y,orientation)
# Generate vectors representing coordinates at which the pattern
# will be sampled.

Expand Down Expand Up @@ -402,7 +402,7 @@ def pil(self, **params_to_override):

elif nchans in [3,4]:
mode = 'RGB' if nchans==3 else 'RGBA'
arr = np.dstack(self.channels(**params_to_override).values()[1:])
arr = np.dstack(list(self.channels(**params_to_override).values())[1:])
arr = (255.0*arr).astype(np.uint8)

else:
Expand All @@ -413,7 +413,7 @@ def pil(self, **params_to_override):

# Override class type; must be set here rather than when mask_shape is declared,
# to avoid referring to class not yet constructed
PatternGenerator.params('mask_shape').class_=PatternGenerator
PatternGenerator.param.params('mask_shape').class_=PatternGenerator



Expand Down
4 changes: 2 additions & 2 deletions imagen/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,8 +279,8 @@ def __call__(self,**params_to_override):
for i in range(ndots):
bigimage[y1[i]:y2[i]+1,x1[i]:x2[i]+1] = col[i]

result = p.offset + p.scale*bigimage[ (ysize/2)+ydisparity:(3*ysize/2)+ydisparity ,
(xsize/2)+xdisparity:(3*xsize/2)+xdisparity ]
result = p.offset + p.scale*bigimage[ (ysize//2)+ydisparity:(3*ysize//2)+ydisparity ,
(xsize//2)+xdisparity:(3*xsize//2)+xdisparity ]

for of in p.output_fns:
of(result)
Expand Down